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1. Introduction 

Many modern computers contain instructions whose 
lengths are span-dependent in the sense that the amount 
of storage occupied by a given instance of such an 
instruction is determined by the distance from that in- 
struction to its operand. Typically, a short form of an 
instruction can be used if the instruction's operand is 
"close" to the instruction, otherwise a long form of the 
instruction must be used. It is usually preferable to use 
the shorter form whenever possible in an effort to reduce 
both program length and execution time. 

The problem of  deciding when it is possible to use 
the shorter form of an instruction on such a machine is 
made nontrivial by the fact that the distance from an 
instruction to its operand depends on the lengths of the 
intervening instructions. These lengths can, of  course, 
depend either directly or indirectly on the length selected 
for the original instruction. In order to simplify code 
generation for compilers and other assembly language 
programmers of such machines, it is desirable to relegate 
the choice between long and short forms of  instructions 
to the assembler. It is the purpose of this paper to 
investigate the conditions under which this choice can 
be made optimally and efficiently. We shall only consider 
translation methods which preserve statement order, thus 
no rearrangement of  code will be permitted. Previous 
work considering similar problems may be found in [3] 
and [61. 

In an attempt to avoid cumbersome notation we shall 
present our results in the context of a specific computer: 
the Digital/Equipment Corporation PDP-11 [5]. How- 
ever, it should be noted that our results apply to any 
computer containing span-dependent instructions (hence- 
forth sdi's) as specified formally in the following defini- 
tion. 

Definition: An instruction is said to be span-dependent 
if 1) the instruction exists in two forms of  differing 
length, 2) the shorter form of such an instruction can be 
used at machine location m only if that instruction's 
operand has an address between m + a and m + b where 
a and b are fixed (and possibly negative) integer con- 
stants, 3) the longer form of such an instruction can 
always be used in place of a shorter form. [] 

Two additional examples of  machines possessing 
sdi's are the Motorola 6800 microprocessor and the IBM 
1130. Undoubtedly, many other examples exist. 

The PDP-11 contains two types of unconditional 
transfer instruction. The branch instruction (mnemonic 
br) is two bytes long and can only be used if the branch 
target is within approximately 254 bytes ~ of the branch 
instruction. The jump instruction (mnemonic jmp) is four 
bytes long but is unrestricted with respect to the location 
of its target. 

Conditional transfer instructions on the PDP-11 are 

More precisely, a branch instruction at address m can have as its 
target any instruction whose address is between m - 254 and m + 256 
inclusive. 
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two bytes long and subject to the same target restrictions 
as the branch instruction. Two such instructions are 
branch-if-equal and branch-if-not-equal (mnemonics beq 
and bne respectively). No conditional analog of  the jump 
instruction exists on this machine and, accordingly, a 
conditional transfer to a distant target must be synthe- 
sized by using a conditional branch in conjunction with 
a jump instruction. For example, if  X were close enough, 
then it would be permissible to use the instruction "beq 
Z". On the other hand, if  X were remote, then we would 
have to use a sequence of instructions such as "bne skip; 
jmp X; skip: . . .  ". 

The PDP-11 assembler available under the U N I X  
operating system [7] supports extended branch mnemonics 
such as jbr, jeq, and jue. I f  the circumstances permit, 
these are translated into branch type instructions, that is, 
br, beq, and bne. Otherwise, they are treated as jmp's or 
as conditional branches over a jmp as described above. 
It is easy to verify that these extended branch mnemonics 
may be regarded as sdi's according to the definition 
given above. 

The actual algorithm used in the U N I X  assembler 
for translating programs containing sdi's is a three-pass 
algorithm which, although not always succeeding in 
minimizing the length of an object program, 2 has very 
good average performance. In Section 2 of  this paper  we 
consider this and other natural, but suboptimal, algo- 
rithms. In Section 3 a two-pass algorithm will be pre- 
sented which is guaranteed to produce the minimum 
length translation of  a program containing span-depend- 
ent instructions. This algorithm requires that the oper- 
ands of  all sdi's be restricted to assembly-time expres- 
sions of  a certain type. I f  this restriction is relaxed, the 
problem of  program size minimization becomes NP- 
complete, as will be proved in Section 4. 

Throughout  this paper the label of  an assembly lan- 
guage statement will be separated from the statement 
proper by a colon. As usual, this label represents the run- 
time address of  the labelled instruction. A period will 
denote the address of  the statement containing it. Greek 
letters will be used to denote sequences of  instructions. 
The size of  a code sequence a, denoted ] a l, is the amount  
of  storage occupied by a under some specified transla- 
tion. The notation "A = n" will be used to represent an 
arbitrary sequence of  instructions which does not contain 
any sdi's and which occupies exactly n bytes of  storage. 

It is traditional in the design of assembly languages 
to allow the programmer to specify the operands of  a 
statement by means of  an assembly-time expression. We 
assume that these expressions are built up from statement 
labels (including "."), integer constants, operators and 
parentheses in the usual manner.  We also assume that 
the usual procedence and associativity rules are used to 
interpret expressions. 

Expressions can be designated absolute or relocatable 

2 Throughout this paper the phrase "program length minimiza- 
tion" means minimizing the total length of the span-dependent instruc- 
tions of the program in question without reordering the code. 
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according to the following rules: 
1. An integer constant is an absolute expression. 
2. A label is a relocatable expression. 
3. I f  r denotes a relocatable expression and a an 

absolute expression, then an expression of the form 
a + r or r +_ a is a relocatable expression; an 
expression of the form a + a or r - r is an absolute 
expression. 

We assume that the operands of  all sdi's in a program 
are specified by relocatable expressions. 

Any translation of  a program containing n sdi's can 
be uniquely specified by listing the set of  sdi's which 
have been translated in the long form. We call such a set 
a selection set. Given a program P and a selection set S, 
we can assign addresses to the instructions of  P in the 
obvious way. I f  S is the empty set (alternatively, the set 
of  all sdi's in P) then the resulting address assignment is 
called the minimum (maximum) address assignment. It 
corresponds to choosing a short (long) translation for 
every sdi in the program. 

Definition: Let S be a selection set for program P. 
The span of  an instruction whose operand is the expres- 
sion E is the value of the expression " E - . "  when evalu- 
ated under the address assignment determined by S. The 
translation of  P corresponding to S is said to be legal if  
the spans of  all sdi's not occurring in S are within the 
architecturally imposed limits for short form instruc- 
tions. [] 
On the PDP-11, the span s of  any extended branch 
instruction which is given a short translation must satisfy 
the condition - 2 5 4  _< s - 256. 

2. Some Natural but Suboptimal Algorithms 

Let us begin by considering some natural ways to 
assemble programs containing sdi's. We shall restrict 
ourselves to assemblers which employ a classical multi- 
pass organization. This is, they first read the program, 
producing a symbol table of  labels and corresponding 
relative addresses. Then, during a subsequent pass over 
the program, they translate the program into actual 
machine code. The basic question here is which addresses 
should be assigned to those labels which have been 
preceded by one or more sdi's. In the sequence 

jbr L 
A: 
L: 

the relative address of  the label A cannot be determined 
until after the size of  the code sequence a has been 
determined. I f  a translates into at most 254 bytes of  code 
then the jbr can be translated into a br and A can be 
assigned relative address 2. Otherwise, the jbr becomes 
a jmp and A is assigned relative address 4. 

It is tempting to circumvent this difficulty by using 
a finite sized buffer to look ahead some fixed amount  
before deciding how to translate a given sdi. The inade- 
quacy of  this approach is shown by the program appear- 
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ing in Figure 1. If  the code segment a involves no more 
than two bytes of  code then all the jbr's can be translated 
as br's, otherwise they must all be translated as jmp's. 
The point here is that no bounded amount of  lookahead 
will guarantee the optimal assignment of  addresses to 
labels. 

Another possible approach is to assign maximum 
addresses to labels during pass 1; that is, assume that 
each sdi must be translated to its long form. One or more 
intermediate passes can then be used to adjust downward 
the sizes of  any sdi's which can be given short translations 
(according to the current symbol table contents) and 
update the symbol table values of  the program's labels. 
The actual translation to machine code is then done 
during a final pass. As an example of  this technique let 
us again consider the program in Figure 1 and assume 
that the code sequence a produces exactly 2 bytes of  
machine code. Recall that under these conditions 
all jbr's of  the program can be translated to br's. During 
the first pass, all the jbr's will be treated as having 
a size of  4 bytes resulting in Li being assigned address 
4 + 256 * i for 0 _< i < n. Label Ln will be assigned 
address 2 + 256 *n. During the second pass the span of  
the statement "jbr Ln" will be discovered to be 256. This 
allows the "jbr L / '  statement to be tested as a br instruc- 
tion and decreases the assigned addresses of  both Ln-1 
and L~ by 2. During each subsequent pass one more jbr 
is discovered to be translatable to a br and the symbol 
table values of  the Li's reach their final values after n + 
1 passes. 

In practice, very few programs exhibit the control 
structure shown in Figure 1. It would therefore probably 
be sufficient to restrict the process to but one interme- 
diate pass. This is in fact the approach taken by the 
UNIX assembler. The resulting assembly algorithm can 
be expected to give near optimal performance. It does, 
however, require three complete passes 3 over the source 
code. Moreover, even if passes were continued until 
convergence occurred, the method would still fail to 
minimize the size of  programs such as the one appearing 
in Figure 2, for which the algorithm would converge 
with X having relative address 0 and Y having relative 
address 262. Thus, both sdi's would have to be translated 
to their long form. However, it is easy to see that if X 
and Y are assigned addresses 0 and 256 respectively, 
then the short form can be used for both instructions. It 
should be noted that the control structure depicted in 
Figure 2 corresponds to the standard implementation of  
a "while" loop and, as such, is not unexpected. 

The point here is that multipass algorithms which 
start with the maximum address assignment and attempt 
to converge downward to a final solution must be sub- 
optimal, although they can be expected to give good 
performance if terminated after a few iterations. Multi- 

3 For example, the first pass of the UNIX assembler assigns 
"estimated" addresses to labels, the second pass determines which form 
should be used for each sdi and assigns "final" addresses to labels, and 
the third pass does the actual translation to object code. 
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Fig. 1. The inadequacy of the "window" approach. 

jbr El 
L0: A = 252 

jhr L2 
LI: A = 252 

jbr Li 
Li-l: A = 252 

jrb Ln 
Ln-l: A -- 252 

Ln: 

Fig. 2. A bistable configuration. 

X: jne Y 
A = 252 
jbr X 

Y: 

pass algorithms which start with the minimum address 
assignment and converge upwards give optimal perform- 
ances but cannot be terminated until convergence occurs. 

Finally, note that the convergence of  multipass al- 
gorithms cannot be guaranteed if the operands of  sdi's 
are allowed to be unrestricted expressions. To see this, 
consider the program fragment in Figure 3. The operands 
of  the jbr's are such that choosing a short translation for 
a given jhr forces some other jhr to be given a long 
translation. Conversely, whenever a jbr is treated as a 
imp, it becomes possible to convert some other jbr to a 
br. The only stable situation is to translate all three jbr's 
as jmp's. Unfortunately, a multipass algorithm which 
attempts to converge toward a solution will fall victim to 
some variant of  the following cycle of  reasoning: 

1) Since the jbr at A is long, the jbr at C can be short; 
2) Since the jbr at C is short, the jbr at B must be 

long; 
3) Since the jbr at B is long, the jbr at A can be short; 
4) Since the jbr at A is short, the jbr at C must be 

long; 
5) Since the jbr at C is long, the jbr at B can be short; 
6) Since the jbr at B is short, the jbr at A must be 

long; 
7) repeat from 1). 

Thus, it is far from clear precisely what strategy should 
be used by a multipass algorithm in order to meet the 
twin requirements of  convergence and optimal perform- 
ance. 

3. An Optimal, Two-Pass Algorithm 

The algorithm to be presented in this section is 
essentially an iterative algorithm which starts with an 
empty selection set and converges upwards to a final 
selection set corresponding to the shortest legal transla- 
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Fig. 3. Nonconvergence of iterative techniques. 
A: jbr  .+260 - (C - B) 
B: jbr  . + 2 6 0  - ( D  - C)  

C: jhr  .+260 - (B - A) 
D: 

tion of  the program in question. As we have just seen, 
the convergence of  such an algorithm cannot be guar- 
anteed unless some restrictions are placed on the oper- 
ands of  the sdi's in the program. The restrictions which 
we need are provided in the following two definitions. 

Definition: A simple expression is a relocatable expres- 
sion containing exactly one label. []  

Without loss of  generality, we can consider all simple 
expressions to be of  the form "label _ constant." Thus 
the expression "A + B - C", although relocatable, is not 
simple. 

Definition: An sdi I is said to be pathological if  there 
exist selection sets $1 and S~ such that, 1) $1 is included 
in $2, 2) the span of  I under $1 is outside the range 
allowed for a short form instruction, and 3) the span of  
I under $2 is within the range allowed for a short form 
instruction. [] 

As an example of  a pathological instruction, consider 
the statement labeled A in Figure 3 and the selection sets 
$1 = {} and $2 = {A, B, C}. Under  the address assign- 
ment implied by S~, the span of  the instruction A is 258, 
which is too large for a short form instruction. On the 
other hand, the span of  A under $2 is only 256, which is 
within the limits allowed for a br instruction. 

The algorithm to be presented in this section requires 
that all sdi's in a program be nonpathological and have 
simple operands. We do not feel that any significant loss 
of  utility results from this requirement. Fewer and fewer 
computers today employ a uniform instruction size, and 
thus even simple expressions of  the form "L + c" are 
somewhat confusing and of  limited usefulness. 4 Indeed, 
all of  the instruction operands produced by the U N I X  
C-compiler are both simple and nonpathological. As we 
shall soon see, pathological instructions are so obfuscat- 
ing that they can be proscribed solely on the grounds of  
program (un)clarity. 

At this point it is necessary to describe how to enforce 
these restrictions. The simplest method for enforcement 
is to automatically translate any sdi which is either 
nonsimple or pathological to a long form instruction. 
This method will revoke the guarantee that the translated 
program is as short as possible. However, as we shall see 
in Section 4, the optimal translation of  programs con- 
taining pathological instructions is prohibitively expen- 
sive anyway. Thus we feel that we are really sacrificing 
very little by discarding them at the onset. 

Identifying nonsimple instructions is easy. In order 

4 The traditional interpretation of an assembly-time expression 
demands that the expression "'L + c" refer to that machine location 
which is c storage units beyond the instruction labeled "L". This 
location is usually not the same as the one which is c instructions 
beyond L. 
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to identify those remaining simple instructions which are 
pathological, we note the following. 

LEMMA: Let I be an sdi with simple operand E. Let 
L be the label occurring in E. Let S be some selection 
set. 

1) I f  I precedes L in the program, then the span of  
I according to S is monotonically nondecreasing as ele- 
ments are added to S. 

2) I f  I occurs after L in the program, then the span 
of  I according to S is monotonically nonincreasing as 
elements are added to S. 

PROOF: Since E is simple, I is of  the form "jbr L + 
c". The only sdi's whose length affects the span of  I are 
those lying strictly between I and L. I f  I precedes L, 
adding any of  these intervening sdi's to S can only 
increase the address of  L while leaving the address of  I 
unchanged. Thus the span of  I, which is L 4"_ c - . ,  cannot 
decrease. 2) is proven in a similar manner.  [] 

Since the spans of  instructions with simple operands 
change monotonically with additions to the selection set, 
it is only necessary to look at the span of  each sdi relative 
to the empty selection set and the selection set consisting 
of  all sdi's in the program. Call these the empty span and 
the ful l  span respectively. 

Let us return for a moment  to the case of  the PDP- 
11. Suppose that I is the sdi "jbr L _ c". I f  I precedes L, 
then I is pathological iff the empty span of  I is < - 2 5 4  
and the full span is _>-254. I f  I occurs after L, then I is 
pathological iff the empty span of  I is >256 and the full 
span of  I is -<256. (As a consequence of  this, note that no 
simple operand having c -- 0 can ever by pathological.) 
For example, consider the code fragment shown below. 

X: A = 50 
Y: jeq someplace 

A = 50 
Z: jbr X + 360 

The span of  the instruction labeled Z is X + 360 - Z. 
Letting y denote the size of  the instruction labeled Y, Z 
= X + 100 + y,  and thus the span of  Z is 260 - y. I f  the 
instruction labeled Y is translated as beq, then the 
(empty) span of  Z is 258 and hence Z must be translated 
as a jmp. On the other hand, if  Y is translated as a bne, 
j m p  pair, then the (full) span of  Z is only 254 and Z can 
be translated as a br. Thus Z is pathological. 

The code fragment used in the previous example is 
reminiscent of  doing an indexed jump  into a table 
(namely, X) of  branch addresses. The operand X + 360 
could presumably arise when a smart compiler folds a 
constant subscript. However, the numbers involved here 
suggest that the subscript was out of  range! Thus we can 
regard this example as justifying our use of  the adjective 
"pathological" to describe instructions such as Z above. 
Indeed, it is very difficult, if  not impossible, to construct 
program schemes containing pathological instructions 
whose computation does not depend on the translation 
selected for its sdi's. 

At this point we have enough terminology to describe 
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our algorithm. Throughout the rest of  this section let n 
denote the number of  sdi's in the program being assem- 
bled. We suppose further that all sdi's have simple 
operands and are nonpathological. 

During the first pass we assign addresses to instruc- 
tions and build a symbol table of  labels and their ad- 
dresses according to the minimum address assignment. 
We do this by treating each sdi as having its shorter 
length. We also number the sdi's from 1 to n in order of  
occurrence and record in the symbol table entry for each 
label the number of  sdi's preceding it in the program. 
Simultaneous with pass 1 we build a set 

S = {(i,a,l,c)ll <- i <- n, a is the minimum address of  
the ith sdi, 1 and c, are the label and constant com- 
ponents of  the operand of  the ith sdi respectively}. 
Between passes 1 and 2 we will construct an integer 

table LONG[I:n] such that LONG[t] is nonzero if and 
only if the ith -sdi must be given a long form translation. 
Initially LONG[t] is zero for all i. 

At the heart of  our algorithm is a graphical represen- 
tation of  the interdependencies of  the sdi's of  the pro- 
gram. For  each sdi we construct a node containing the 
empty span of  that instruction. Nodes of  this graph will 
be referred to by the number of  the sdi to which they 
correspond. Directed arcs are now added to the graph so 
that i ---> j is an arc if and only if the span of  the ith sdi 
depends on the size of  the j th  sdi, that is, the j th  sdi lies 
between the ith sdi and the label occurring in its operand. 
It is easy to see that the graph we have just described 
can be constructed from the information present in the 
set S and the symbol table. 

The significance of  this graph is that sizes can be 
assigned to the sdi's of  the program so that the span of  
the ith sdi is equal to the number appearing in node i if 
and only if all the children of  i can be given short 
translations. 

After the structure is built we process it as follows. 
For  any node i whose listed span exceeds the architec- 
tural limit for a short form instruction, set LONG[t] 
equal to the difference between the long and short forms 
of  the ith sdi. Increment the span of  each parent of  i 
by LONG[t] if the parent precedes the child in the pro- 
gram. Otherwise, decrement the span of  the parent by 
LONG[t]. Finally, remove node i from the graph. Clearly 
this process must terminate. Any nodes left in the final 
graph correspond to sdi's which can be translated in the 
short form. 

Now construct a table INCREMENT[0:n] by defin- 
ing INCREMENT[0] = 0 and INCREMENT[t]  = IN- 
CREMENT[/  - 1] + LONG[t] for 1 < i < n. INCRE- 
MENT[t] represents the total increase in size of  the first 
i sdi's in the program. At this point we can adjust the 
addresses of  each label L in the symbol table. I f  L is 
preceded by i sdi's in the program, then add INCRE- 
MENT[t] to the value of  L in the symbol table. Finally, 
we do the traditional second assembly pass using the 
LONG table to specify how each sdi is to be treated. 

As an example of  the operation of  this algorithm, 
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Fig. 4. An example program for the algorithm. 
A =  100 

A: jne B 
A = 248 
jbr C 
jbr A 

B: jeq E 
A = 246 
jbr A -  10 

C: jbr F + 20 
A = 2  

E: A = 300 
F: 

Fig. 5. The initial dependency graph. 

consider the program shown in Figure 4. The initial 
dependency graph is shown in Figure 5. The numbers 
occurring inside each node are, respectively, its node 
number and current span. Initially nodes 5 and 6 are the 
only nodes whose spans necessitate translation as long 
form instructions. Node 5 is removed from the graph 
and the spans of  both nodes 2 and 4 are increased to 
256. Node 6 is now removed, changing the span of  node 
4 to 258. Since this is too large a span for a br, node 4 
can be removed, increasing the span of  node 2 to 260 
(the long form of jeg  is 6 bytes long). Finally, node 2 is 
removed, increasing the span of  node 1 to 256 and 
decreasing the span of  node 3 to -254,  both of  which 
are legal spans for short form instructions. The final 
graph is shown in Figure 6. Thus the length of  the 
program appearing in Figure 4 is minimized by giving a 
short translation to the two statements "jne B" and "jbr 
A". All the other sdi's must be given long translations. 

The following facts provide the basis for the claim 
that the algorithm minimizes program size. ( l)  The 
decision to use a long translation for a given sdi is not 
made until a long translation for that instruction has 
been proven necessary. (2) Since sdi's are required to be 
nonpathological, it will never be the case that once a 
given sdi has been shown to require a long translation, 
subsequent selections of  long translations for other sdi's 
will allow its translation to take the short form. (3) The 
order in which nodes are removed from the graph is 
irrelevant. Once the span listed in a node exceeds the 
allowed range for a short form instruction, the node must 
eventually be removed. 

The running time of  the algorithm just presented is 
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Fig. 6. The tinal dependency graph. 

essentially proportional to the number of  arcs in the 
dependency graph because no arc is ever followed from 
a child to a parent more than once. In the worst case 
there could be nearly n 2 such arcs but for reasonable 
programs it is likely that there would be only O(n) arcs. 
Since space is likely to be of  more concern than time in 
the implementation of  this algorithm, we suggest that a 
brute-force scan of  the set S be used to find the parents 
of  a given node. The worst case running time of  the 
algorithm 5 remains O(n 2) but the space requirement is 
reduced to O(n) because it is no longer necessary to 
explicitly construct the arcs of  the dependency graph. 

Mark Linton, an undergraduate student at Princeton, 
has implemented the algorithm in this final form and 
incorporated it into the UNIX assembler for the PDP- 11 
as a substitute for that assembler's intermediate pass. As 
a test of  the effectiveness of  our techniques, the entire 
UNIX operating system was compiled into PDP-11 as- 
sembly language and subjected to the two assemblers. 
The UNIX code contained 1424 sdi's (all of  which were 
simple and nonpathological) and assembled into approx- 
imately 27K bytes of  instructions. The original assembler 
used a long form for 80 of  these sdi's whereas the 
modified (and optimal) assembler produced only 60 long 
translations. More significantly, the modified assembler 
ran 25% faster than the original assembler. Several points 
should be made here. First, since such a high percentage 
of  sdi's can be translated, short, extensive space savings 
(in this case about 4.5K bytes, or 17% of  the total 
operating system size) can result from doing long/short 
optimizations. Second, the heuristic used in the original 
UNIX assembler is quite effective, coming in this case 
within 60 bytes of  the minimal size. Third, the major 
justification for using the method proposed in this paper 
is the assembly time which can be saved while still 
producing optimal translations. 

In closing this section, it should be noted that the 
requirement that programs not contain any pathological 
instructions was crucial for guaranteeing the optimal 
convergence of  our algorithm. The requirement that all 
sdi's have simple operands was made solely for conven- 
ience. We leave as an exercise for the reader the task of  
modifying the algorithm given above to accommodate 
programs containing nonsimple operands. It should also 
be noted that the processing described above is unnec- 
essary in the case of  those sdi's which must be translated 
long under any selection set or which can be translated 
short under all selection sets. 

s For each sdi m which requires a long translation we must adjust 
the span of all sdfs whose span is dependent on m. 
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4. Minimizing Program Length is NP-Complete 

In the previous section an efficient algorithm for the 
length minimization of  programs with simple operands 
was presented. If  a program is allowed to contain path- 
ological or nonsimple operands, it is still possible to 
minimize its length, although the algorithm for doing so 
may no longer be efficient. Since there are only two ways 
of  translating each sdi in a program, there are at most 
0(2  n) possible translations of  a program containing n 
sdi's. We could simply generate each of  these transla- 
tions, discard those which are not legal, and select as our 
result the shortest surviving program. The algorithm we 
have just described would obviously require an enor- 
mous amount of  time to process any program of  sub- 
stantial size. Nevertheless, it is our goal in this section to 
show that there really is no significantly better way to 
handle the general problem than the bruteforce tech- 
nique we have just described. We shall do this by show- 
ing that the problem of  determining the minimum fea- 
sible length of  an arbitrary program is NP-complete. 

The class of  NP-complete problems consists of  a large 
number of  essentially combinatorial problems for which 
all known algorithms require (in the worst case) expo- 
nential time. Moreover, if any one of  these problems 
could be solved in polynomial time, then they all could. 
Many famous optimization problems such as the travel- 
ing salesman problem and the chromatic number prob- 
lem for graphs have been shown to be NP-complete. 
These problems have been studied for decades without 
the discovery of  any efficient algorithmic solutions. It is 
therefore widely believed that no polynomial time solu- 
tion exists for any NP-complete problem. Readers desir- 
ing more information about NP-complete problems may 
consult the literature (e.g. Ill or [4]) for additional back- 
ground and terminology). 

For technical reasons it is useful to require that all 
problems be phrased so as to have a yes/no answer. 
Accordingly, the problem considered in this paper can 
be cast as follows. 

Definition: Given an integer s and an assembly lan- 
guage program P, the instruction length assignment prob- 
lem is to determine whether P can be assembled to yield 
an object program of  size s or less. [] 

We now need some sort of  measure of  the size of  a 
problem. Intuitively, the size of  a problem is that param- 
eter (or parameters) of  the problem which determines 
the running time of  algorithms which solve the problem. 
In the case of  the instruction length assignment problem, 
the size of  an instance of  the problem can be defined to 
be the number of  sdi's in a program. 6 

In order to show that a problem is NP-complete, it is 
necessary to show, first, that the problem can be solved 
nondeterministically in an amount of  time which is 
bounded by a polynomial function of the problem size, 

6 Alternatively, the number of statements in a program could be 
defined to be the size of a problem. We view this definition of size as 
being less relevant to those aspects of the problem which interest us. 
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and secondly, that the problem is at least as hard as any 
other problem which is solvable in nondeterministic 
polynomial  time. The first requirement is a technical 
detail which is usually easy to verify. Accordingly we 
shall not bother to demonstrate it in our proofs. 

The second requirement is most easily fulfilled by 
showing how to transform an instance x of  some known 
NP-complete problem X to an instance y of  the problem 
of  interest Y. This transformation must be efficient in 
the sense that it can be done in polynomial time (in the 
size of  x) and does not increase the size of  x by more 
than a polynomial  factor. Moreover, the answer to x 
must be yes iff the answer to y is yes. The "known NP- 
complete problem" which we shall employ in our proofs 
is the following. 

Definition: An instance of  the 3-satisfiabilityproblem 
is a set of  variables {xill _< i -< n} and a collection of  
clauses C~ . . . . .  Cm such that each Cj is a set consisting 
of  exactly 3 literals of  the form xi or xi. A given instance 
of  the problem is said to be satisfiable if  there exists a 
truth assignment f mapping {Xi I 1 _< i _< n} into {true, 
false} such that for every j in the range l _< j _ m there 
exists an i such thatf(xi)  = true and xi E Cj or elsef(x/) 
= false and xi E C~. The size of  an instance is simply n 
+ 3m. [] 

The 3-satisfiability problem was first defined and 
proven NP-complete  in [2]. We can now state and prove 
the main result o f  this section. 

THEOREM 1 : The instruction length assignment prob- 
lem is NP-complete if  the assembly language programs 
under consideration are allowed to contain span-depend- 
ent instructions whose operands are arbitrary assembly- 
time expressions. 

PROOF: We shall show how to transform an arbitrary 
instance I of  the 3-satisfiability problem to a program PI 
which can be translated to a certain min imum length iff  
I is satisfiable. For each variable xi, PI contains the code 
fragment 

Yi: jbr 
A = 254 

Zi: 

For  every clause Cj = {lj.1, 15.2, lj.3}, PI contains the code 
fragment 

As: 

B j: 

A -- 246 
jbr t~,l 
jbr t~,2 
jbr t j,3 

I f  lj,~ is an unnegated literal xi, then E ,  is " .+Z i -Y i " .  I f  
lj,k is an negated literal ii, then tj,k is " . + Z i - Y i - 5 1 2 " .  
Finally, for every clause Cj we add to Pt exactly n + 3m 
+ 1 copies of  the statement "jbr . + B T A T ' .  Thus P~ 
contains a total o f n  + 3m + (n  + 3m + 1)m sdi's. The 
total length of  a given translation of  PI is 256n + 254m 
+ 2nm + 6m 2 + 2q where q is the number  of  jmp 
instructions in the translated version of  Pt. 
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We shall now show that I is satisfiable iff PI can be 
assembled to produce a program of  size 258n + 260m 
+ 2nm + 6m 2 or less. Equivalently, I is satisfiable iff  PI 
can be assembled to an object program containing at 
most n + 3m imp instructions. 

The following observation will be useful. Suppose 
that c is an even integer constant in the range 0 _< c <- 
258. The statement "jbr .+c"  can be given a short 
translation iff c -< 256. The statement "jbr . + c - 5 1 2 "  can 
be given a short translation iff c = 258. 

In any translation of  Pt, each of  the statements 
"Yi:jbr." can be translated as either "Yi:br." or as "Yi: 
jmp.". Thus, for 1 _< i _< n, the distance Zi - Yi can be 
either 256 or 258. These n selections correspond to an 
assignment of  truth values to the variables of  I in a 
natural way, namely, Zi - Yi is 256 iff xi is true in the 
given truth assignment. 

In any translation of  PI, each of  the distances Bj - Aj 
must be 252, 254, 256, or 258. The first 3 possibilities 
arise when at least one of  the jbr 's between A i and Bj is 
given a short form translation. This is, of  course, equiv- 
alent to saying that at least one of  the literals of  Cj is 
made true by the truth assignment determined by the 
Zi - Yi distances. 

I f  I is satisfiable, it is possible to select the Zi - Yi 
distances with Bj - Aj _< 256 for 1 _< j _< m. This means 
that all of  the statements "jbr .+Bi - Aj" can be given 
short translations. Thus no more than n + 3m jbr 's  need 
be translated as jmp's. 

Conversely, if  I is unsatisfiable, then for any choice 
of  the Zi - Y~ distances, there will be at least one value 
o f j  for which all three of  the jhr 's between Aj and Bj 
must be given long translations. This means that Bj - Aj  
will be 258 and so all n + 3m + 1 of  the statements "jbr 
. + B j - A  7' must be translated as jmp's. Thus Pt will 
contain at least n + 3m + 1 jmp's. This completes the 
proof  of  the theorem because it is obvious that the 
transformation of  I to PI can be done in polynomial  
time. [ ]  

It turns out that the computational  difficulty in min- 
imizing program size is due to the presence of  patholog- 
ical instructions and is independent of  whether operands 
are constrained to be simple. We show this below. 

THEOREM 2: The instruction length assignment prob- 
lem is NP-complete  even if all operands of  sdi's are 
simple. 

PROOF: Let I be an instance of  the 3-satisfiability 
problem having n variables xi, 1 _< i -< n, and m clauses 
Cy = {ly,1, b',2, b,a}. Let q = n + m + 1. We shall construct 
a program QI which can be legally translated with a 
selection set o f  size n + 2m or less iff I is satisfiable. 

First, consider the program P~ shown in Figure 7. As 
in the proof  of  Theorem 1, the translations selected for 
the statements labeled Yi will correspond to a unique 
assignment of  truth values to the variables xi of  I. Spe- 
cifically, Yi is translated as a br (making Zi - Yi -- 2) if  
xi = true; Yi is translated as a imp (making Zi - Yi  = 4)  
if  xi -- false.  
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Fig. 7. Basic construction for proof of Theorem 2. 

Yx: jbr 
ZI: jbr 

a t  

Yn: jbr 
Z.: jbr 

O/n 
Ax,l: jbr 
Ax,2: jbr 
A1,32 jbr 

AI,1 4- tl,1 
A1,1 4- tx,2 4- 4 
A1,1 4- tl,3 + 8 

Am, l: j b r  Am,1 + tin,1 
Am,2: jbr Am,1 4- tm,2 4- 4 
Am,a: jbr mm, l 4- tm,3 4- 8 

/~m 

The q.k are expressions defined as follows. If  lj, k is an 
unnegated literal, say xi, then ti,k is "Zi - Yi 4- 254". If  
Li,h is a negated literal, say ii, then ti,k is "Zi  - Y i  - 
258". The tj, k have been carefully selected so that 

1) A~,I is translatable as a br iff the literal lj,~ is made 
true by the truth assignment defined by the Zi - Y~ 
distances. 

2) IfAj,1 is translated as a imp, then Ay,2 is translatable 
as a br iff the literal li,2 is made true by the truth 
assignment defined by the Z~ - Yi distances. 

3) If  mj, x and Ai,2 are both translated as jmp's then Aj, a 
is translatable as a br iff the literal lj, a is made true 
by the truth assignment defined by the Zi - Yi 
distances. 

It is easy to verify that 
I is satisfiable iff Pi can be translated 
so that for every j, exactly one of  Aj, k, 

(*) 1 ----- k _< 3, is translated as a br and 
the other two are translated as jmp's. 

The code segments denoted by ai and fly are called 
enforcers and have the following properties: 

a) Each enforcer consists of  exactly 2q + 2 jbr state- 
ments. 

b) Within any enforcer, if any one jbr is translated as 
a imp, then at least 2q of  the jbr's in that enforcer 
must be translated in the long form. When this 
happens, we say that the enforcer explodes. 

c) If  the translation of  Yi and Zi produces exactly 6 
bytes of  code (i.e. one imp and one br), then all the 
jbr's in cti can be translated as br's. 

d) If  the translation of  Yi and Zi does not produce 
exactly 6 bytes of  code (i.e. both are translated as 
br's or else both are jmp's), then ai explodes. 

e) Similarly, fli must explode if the three statements 
As,k, 1 ----- k ----- 3, do not produce exactly one br and 
two jmp's. 
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It should be clear from the properties of  enforcers and 
(*) above that 

I is satisfiable iff PI can be translated 
(**) to have exactly n + 2m jmo's. 
To see this, first suppose that I is satisfiable and consider 
any one of  the translations whose existence is implied by 
(*). The translations of  the statements labeled Zi can be 
freely chosen so that Zi is a imp iff Yi is a br. By property 
(c) above, all of  the jbr's in the ai's can therefore be 
translated as br's. Moreover, by property e) above, all of  
the jbr's in the tiffs can be translated as br's. This gives 
us a total of  exactly n + 2m jmp's. 

Now suppose that a translation of  Pt having exactly 
n + 2m jmp's exists. Clearly, none of  the enforcers in 
such a translation could be exploded, for if it were, then 
the translation would contain at least 2q = 2n + 2m 
+ 2 > n + 2m jmp's. Thus, for every j, exactly one of  the 
statements Ai,h, 1 --< j <-- 3, is a br. By (*), I is satisfiable. 

Unfortunately, the operands in PI are not all simple 
expressions. We must therefore show how to modify P1 
to form a new program Qx which has only simple oper- 
ands and which can be translated to have n + 2m jmp's 
iff PI can. 

One of  the main functions of  the enforcers in Pt is to 
bind certain labels to fixed relative addresses in any 
minimal length translation of  Px. More precisely, 

A given translation of  Pt contains 
exactly n + 2m jmp's iff label Yi is at 

(***) relative address (4q + 10)(i - 1), 1 
--< i _< n, and Aj,1 is at relative address 
(4q + 10)n + (4q + 1 4 ) ( j -  1), 1 -< 
j < _ m .  

The only operands appearing in PI which are not 
simple occur in the statements labeled Ai,h. These oper- 
ands are all of  the form Aj,1 + Zi - Yi + c where c is 
some integer constant. This can, of  course, be written as 
Zi  + (AjA - Yi  - c). Notice that the subexpression in 
parentheses is absolute. By (***), this subexpression can 
be replaced with the constant (4q + 10)(n + 1 - 0 + (4q 
+ 14)(] - 1) ___ c. The resulting program is the desired 
QI. It is easy to verify that properties a) through e) of  
enforcers, as well as statements (*), (**), and (***), are 
also true of  Qt. Thus Q1 can be translated to contain n 
+ 2m jmp's iff I is satisfiable. 

In order  to complete our proof, we must show how 
to construct an enforcer having only simple expressions 
as operands. Figure 8 shows an enforcer which explodes 
to produce at least 2q jmp's in any legal translation in 
which 3' produces other than k bytes of  code. Observe 
first that 

1) If  A1 is translated as a jmp, then BI must be too. 
2) For 1 _< i < q, if B/is translated as ajmp, then Bi+x 

must be too. 
3) I f  Bq is translated as a imp, then Aq must be too. 
4) For 1 _< i < q, ifAi+x is translated as ajmp,  then Ai 

must be too. 
Thus all of  the Ai's and Bi's must be translated as jmp's 
if any one of  them is. Moreover, if either F or G is 
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Fig. 8. Constructing an enforcer. 
E: ~, 
F: jbr E + 256 + k 
G: jbr E - 252 + k 
At: jbr B2 + 250 
BI: jbr F - 248 
A2: jbr B3 + 250 
B2: jbr B1 - 250 

Ai" jbr Bi+l + 250 
Bi" jbr Bi-1 - 250 

Aq-l"  j b r  Bq + 250 
Bq-l :  j b r  Bq-2 - 250 
Aq: jbr C + 252 
Bq: jbr Bq-1 - 250 
C: 

translated as a jmp, then B1 (and hence all the Ai's and 
Bi's) m u s t  be too. 

Consider the statement "F: jbr E + 256 + k", which 
we could just as well write as "F: jbr .-I~1 + 256 + k". 
If  I'/I < k, then k-I~'l + 256 > 256 and F must be 
translated as a jmp thus triggering the required explosion. 

Next consider the statement "G: jbr E - 252 + k", 
which could just as well be written "G: jbr . -I  Y l - f -  
252 + k"  w h e r e f i s  the length of  the code produced by 
the statement F. Since f_> 2, if I~1 > k, then k-IYl - f  
- 252 < - f -  252 <_ -254.  This means that G must be 
translated as a jmp and the enforcer must explode. 

Hence any legal translation of  the program fragment 
in Figure 8 must contain at least 2q jmp's if lYl ~ k. We 
leave to the reader the task of  verifying that if there 
exists a legal translation of this program fragment in 
which I TI = k, then there exists a legal translation in 
which every one of  the jbr's shown is translated as a br. [] 

early draft of  this paper. An algorithm similar to the one 
presented in Section 2, but restricted to the case where 
the operands of sdi's are labels only, has been independ- 
ently discovered and implemented in the BLISS-11 com- 
piler [8]. 
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5. Summary 

The problem of  minimizing the length of  programs 
containing span-dependent instructions was considered. 
An efficient algorithm was presented for minimizing the 
length of  programs all of  whose span-dependent instruc- 
tions were nonpathological and had simple operands. 
Although it is possible to remove the restriction to simple 
operands, the restriction to nonpathological instructions 
is apparently essential. This was demonstrated by the 
proof that the instruction length assignment problem for 
programs with simple operands is NP-complete if path- 
ological instructions are allowed. 
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