A Maze Of Twisty Little Passages

In Crowther’s 1970s COLOSSAL CAVE ADVENTURE, whose lay-
out happened to be partly modeled after Kentucky’s MAMMOTH
CAVE, you may recall two mazes: the original “all alike” one
and an “all different” one that was added later. The same kind of
distinction is commonly made in classifying modern parallel com-
puting systems as SIMD or MIMD, and providing different, often
mutually incompatible, programming environments for each. Is it
really necessary to make such a stark distinction between the two?

Take a moment to examine one of the little mazes in our SC14
exhibit. Each of the colored balls has a different path to take —
it’s a MIMD program. Yet, it is perfectly feasible to efficiently
get all the balls to their respective destinations by a series of
tilts of the table — execution on SIMD hardware.

We have been using MIMD-on-SIMD technologies for over
two decades, targeting SIMD hardware from the MasPar MP-1
supercomputer to arrays of millions of tiny nanocontrollers....

GPUs (Graphics Processing Units). Modern GPUs are not ex-
actly SIMD, using a model that avoids most scaling limitations of
SIMD by virtualization, massive multithreading, and imposition
of a variety of constraints on program behavior (e.g., recursion is
not allowed by NVIDIA nor by AMD). This branch off the SIMD
family tree has grown quickly, with new programming models and
languages appearing at each new bud... but little code base and
many portability issues. MIMD C, C++, or FORTRAN using MPI
message passing or OPENMP shared memory are now the bulk
of the parallel program code base, so we suggest using those —
via the public domain MIMD On GPU (MOG) technologies
we are developing.

SC08 MOG. The first proof-of-concept MOG system was demon-
strated in our exhibit at SCO8. Actually, there were two systems,
one using an interpreter and another using META-STATE CON-
VERSION (MSC) to generate pure native code. Both shared the
same MOG instruction set and C-subset compiler.

The Instruction Set Architecture (ISA) needs to make the
performance-critical GPU features accessible while minimizing
the number of different types of instructions in common use. The
C compiler we built for the system accepted and optimized only
a subset of C supporting both integer and floating point data,
the usual C operators and statements, recursive functions, and a
parallel-subscript extension for remote memory access.

The simulator, mogsim, targeted both NVIDIA CUDA systems
and generic C hosts. It correctly handles recursion, system calls,
breaking execution into fragments fitting within the allowable

GPU execution timeout, etc. The simulator’s fixed code was com-
piled with data structures generated by mogasm, our optimizing
assembler. Multiple node programs can be compiled separately
and integrated by the assembler for true MIMD (not just SPMD
with MIMD semantics).

The MSC-based system avoids all overhead from use of GPU
resources to fetch and decode instructions, but was somewhat
buggy and has not yet been fixed.

SC09 MOG. Much more sophisticated analysis and transforma-
tions enabled mogasm to create a highly customized mogsim for
each program — making MOG execution nearly as fast as native
CUDA. Slowdown was generally less than 6X and often just a few
percent. Actually, there were over a dozen completely different
approaches tried for mogasm to achieve this performance, includ-
ing optimizations based on runtime statistics, scheduling using a
GENETIC ALGORITHM (GA), and even per-program automatic
instruction-set recoding to improve runtime decode overhead.

SC10-12 MOG. The MOG environment using the best of the
previous year’s interpretation strategies was released as full “alpha
test quality” source code. Unlike earlier versions, it allows any
compiler tool chain targeting MIPSEL to be used to compile your
code. The GCC-based version is called mogcc, and can process
any of the languages that compiler supports. The new ISA enables
more optimizations than the old one, and hence typically outper-
forms it by a small margin. The assembler, mogas, generates an
optimized CUDA interpreter named mog. cu.

SC13-14 MOG. Work has centered on fixing “bit rot” in the
released code and bringing the host system call interface to a more
usable level. General-purpose mechanisms for passing arguments
and return values between code running inside the GPU and the
host have been implemented and tested using a set of system
calls allowing GPU code to do file I/O. The new release is at
https://github.com/aggregate/MOG/

What’s Next? Current work involves improving overall usability,
in particular the cross compiler and related build mechanisms.
We also are building a small library of MPI system calls to
make MOG more fully compatible with the MPI environment,
and expect to have a GPU cluster running MOG MPI code soon.

This document should be cited as:
@techreport{scldmog,

author={Henry Dietz and Sam Morris},

title={A Maze Of Twisty Little Passages},
institution={University of Kentucky},
address={http://aggregate.org/WHITE/scl4mog.pdf},
month={Nov}, year={2014}}

&sw \ggregate. 07G-

UNBRIDLED COMPUTING

