
A Maze Of Twisty Little Passages

In Crowther’s 1970s COLOSSAL CAVE ADVENTURE, whose lay-
out happened to be partly modeled after Kentucky’s MAMMOTH
CAVE, you may recall two mazes: the original “all alike” one
and an “all different” one that was added later. The same kind of
distinction is commonly made in classifying modern parallel com-
puting systems as SIMD or MIMD, and providing different, often
mutually incompatible, programming environments for each. Is it
really necessary to make such a stark distinction between the two?

Consider the wooden maze (shown above) that has been in our
SC Research Exhibit since SC08. Each of the colored balls has
a different path to take (MIMD), yet it is perfectly feasible
to efficiently get all the balls to their respective destinations
by a series of tilts of the table (SIMD).
GPUs (Graphics Processing Units). Modern GPUs are not ex-
actly SIMD, using a model that avoids most scaling limitations of
SIMD by virtualization, massive multithreading, and imposition
of a variety of constraints on program behavior (e.g., recursion is
not allowed by NVIDIA nor by ATI). This branch off the SIMD
family tree has grown quickly, with new programming models
and languages appearing at each new bud... but little code base
and many portability issues. MIMD C, C++, or FORTRAN using
MPI message passing or OPENMP shared memory are now the
bulk of the parallel program code base, so we suggest using those
– via the public domain MIMD On GPU (MOG) technologies
we are developing.

SC08 MOG. The first proof-of-concept MOG system was demon-
strated in our exhibit at SC08. Actually, there were two systems,
one using an interpreter and another using META-STATE CON-
VERSION (MSC) to generate pure native code. Both shared the
same MOG instruction set and C-subset compiler.

The Instruction Set Architecture (ISA) needs to make the
performance-critical GPU features accessible while minimizing
the number of different types of instructions in common use.
Targeting NVIDIA CUDA GPUs led to a stack machine using
shared memory to implement an explicitly-managed variable-
depth stack cache. The C compiler we built for the system
accepted and optimized only a subset of C supporting both integer
and floating point data, the usual C operators and statements,
recursive functions, etc. It also had a simple parallel-subscript
language extension allowing direct access to other processing
element’s variables.

The simulator, called mogsim, targeted both NVIDIA CUDA
systems and generic C hosts. It correctly handles recursion,
system calls, breaking execution into fragments fitting within
the allowable GPU execution timeout, etc. Code was stored in a
texture, registers and an evaluation stack in device shared (local)
memory, and the regular stack and user data in global memory.
The simulator’s fixed code was compiled with data structures
generated by mogasm, our optimizing assembler. Multiple node
programs can be compiled separately and integrated by the as-
sembler for true MIMD (not just SPMD with MIMD semantics).
The MSC-based system avoids all overhead from use of GPU
resources to fetch and decode instructions, but was somewhat
buggy and has not yet been fixed.
SC09 MOG. Much more sophisticated analysis and transforma-
tions enabled mogasm to create a highly customized mogsim for
each program – making MOG execution nearly as fast as native
CUDA. Slowdown was generally less than 6X and often just a few
percent. Actually, there were over a dozen completely different
approaches tried for mogasm to achieve this performance, includ-
ing optimizations based on runtime statistics, scheduling using a
GENETIC ALGORITHM (GA), and even per-program automatic
instruction-set recoding to improve runtime decode overhead.
SC10 MOG. This year’s MOG environment is based on the best
of the previous year’s interpretation strategies, but is actually a
complete re-write with one goal in mind: make it possible to
trivially port various full-language compilers to target our system.
This is accomplished using a new, accumulator plus registers, ISA
for which a nasty set of scripts can retarget generic MIPSEL
code. The GCC 3.4 based version is called mogcc, and can
process any of the languages that compiler supports. (LLVM 2.8
was originally the preferred front-end, but it’s MIPSEL back-end
is buggy.) The new ISA enables more optimizations than the old
one, and hence typically outperforms it by a small margin.
The assembler for the new ISA is called mogas, and generates
an optimized CUDA interpreter named mog.cu. An OPENCL
target also is under development. The complete system, which
we view as “alpha test quality,” will be released as full open
source on November 22, 2010 at Aggregate.Org.

This document should be cited as:
@techreport{sc10mog,

author={Henry Dietz, Dalton Young, Diego Rivera},

title={A Maze Of Twisty Little Passages},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc10mog.pdf},

month={Nov}, year={2010}}


