
Come Together Right Now Over Me

INTERCONNECTION NETWORKS, sometimes called SYSTEM
AREA NETWORKS (SANs), play a critical role in all types
of parallel computers – be they clusters spanning many racks,
multiple cores on a processor chip, or a massively-parallel GPU.
Although commodity hardware and straightforward topologies are
sometimes effective, communications within parallel programs
tend to have specific properties that allow a well-engineered
network to dramatically outperform the obvious alternatives.
Aggregate Functions. In parallel computing systems, it is very
common that the global state of a computation must be sampled –
which is not an efficient operation when synthesized as “collective
communications” using point-to-point network hardware. In 1994,
we invented AGGREGATE FUNCTION NETWORKS (AFNs) as an
extension of the fast barrier synchronization hardware we had
developed earlier. An AFN doesn’t route messages; rather, an
AFN is really a simple parallel computer dedicated to com-
puting functions of global state. A typical aggregate function
communication is implemented by each processor placing its data
and an opcode in its dedicated interface to the AFN and then
reading the AFN-computed result back. Thus, many operations
sampling global state can be implemented in essentially constant
time independent of the number of nodes. The AFAPI (Aggregate
Function Application Program Interface) includes:

• Confirmation of hardware reliability
• Barrier synchronization
• VLIW multiway branch support
• SIMD any and all tests
• Broadcast & multicast
• PutGet (conflict-free reverse-routed messages)
• Reductions
• Scans (parallel prefix operations)
• Searches (first, count, & quantify)
• Voting & scheduling operations
• Ranking (sorting)
• Parallel signaling (“Eurekas”)

Cluster AFNs. Using simple custom hardware, most basic aggre-
gate operations are accomplished with just 3µs total latency. We
have placed various AFN hardware designs and support software
in the public domain. The simplest design is WAPERS (Wired-
and Adapter for Parallel Execution and Repid Synchronization),
which uses wired-AND logic implemented by wiring parallel
ports together without any active components. High-performance
cluster AFNs, such as the 2006 KAPERS (Kentucky’s Adapter
for Parallel Execution and Rapid Synchronization) AFN shown
above, can be implemented for less than $25/node.

Although we have been building high-performance AFN hardware
since 1994, significant improvements continue to be made, and the
2006 KAPERS AFN incorporates a number of firsts. In addition
to the basic functions, this AFN supports a very general form of
shared memory. The memory is nybble-oriented, but efficiently
supports various operations on data objects of any multiple of 4
bits in length. This AFN also supports reduce multiply operations
of any precision, implementing multiplication using addition of
values represented in a logarithmic number system.
On-Chip AFNs For Multi-Core Processors. As multi-core
processors have become common, there has been much talk of
scaling to huge numbers of cores on a single chip. However,
shared memory communication does not scale well to large
numbers of cores due to a combination of competition for
shared resources and the overhead of dynamic arbitration. By
tightly integrating an AFN on chip, an alternative, more efficient,
path is provided for coordination and communication. With Sam
Midkiff at Purdue, simulation of a detailed structure for a CMP-
AFN to be integrated with IA32 cores sped-up OpenMP barrier
synchronization by 6X on 4 cores and 12X on 16 cores.
AFN concepts for GPUs. To hide memory latency, Graphics
Processing Units (GPUs) sacrifice many of the timing properties
of traditional SIMD, making the obvious implementation methods
problematic. We are working on efficient hardware and software
implementations of the AFAPI. The hardware changes generally
require redesign of GPU chips, but significant improvements
can be made by software leveraging some of the more obscure
properties of existing GPU hardware.
For example, AFAPI operations can be implemented on compute
capability 1.0 NVIDA CUDA systems – which do not have
any of the “atomic operation” hardware support present in later
models – by using the fact that multiple “simultaneous” maskable
stores to the same memory cell are processed efficiently. AFAPI’s
p_any(flag) operation within a block can be coded as:

if (flag) sharedtemp = serial; /* maskable store */

__syncthreads();

p_any = (sharedtemp == (serial++));

This document should be cited as:
@techreport{sc08afn,

author={Henry Dietz and Diego Rivera},

title={Come Together Right Now Over Me},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc08afn.pdf},

month={Nov}, year={2008}}

