
You Can’t Always Get What You Want

If you try sometimes you might find you get what you need – but
maybe not. That’s the problem with caches. As modern processors
have sprouted increasingly complex memory hierarchies, they
still have not solved the fundamental problem of ensuring that
instructions and data are always ready when they are needed.
A value kept in a register is there when you need it. However,
there are lots of memory objects conventional machines do not
keep in registers. Instructions are not kept in registers, although
there really isn’t a good reason why not. There is a widely held
belief that registers don’t help with “spatial locality” – but that
is true only if we assume that a register is just one object wide.
Of course, ambiguously aliased data cannot be kept in registers.
For example, if a code refers to a[i] and a[j] a number of
times, there are three possible circumstances:

• If the compiler knows i==j, then a[i] and a[j] are unambigu-
ously aliased and can share a single register

• If the compiler knows i!=j, it can allocate one register for a[i]
and another for a[j]

• If the compiler doesn’t know the relationship between i and j, any
change to one might require update of the other, so the changed
value is stored and the value of the ambiguously aliased object
must be reloaded

In fact, ambiguously aliased object references are the only reason
a processor needs cache: without cache, the store and reload
would become slow references to main memory. Even so, it is
possible that the cache would be ineffective, because references to
other objects might have had addresses hashing to the same cache
line slot, thus evicting the desired object from cache. However,
everything needed to resolve the ambiguity was in the processor
– why not simply modify the register file to automatically update
aliased objects in other registers?
CRegs & LARs. Our SC’88 paper, CRegs: A New Kind of
Memory for Referencing Arrays and Pointers, introduced CACHE-
REGISTERS to solve the ambiguous alias flushing problem by
associatively updating registers whose address fields match. Com-
mercial adoption of CREGs was impeded by the need for a CREG
ISA, although the Itanium “Advanced Load” mechanism obtains
some of the benefits with only minor ISA adjustments. However,
data CREGs don’t make use of spatial locality – our work on
LARs (LINE ASSOCIATIVE REGISTERS) over the past few years
combines CREGs with SWAR (SIMD WITHIN A REGISTER) to
take full advantage of spatial locality. The basic hardware cell
structures are:

Name:

Name: Data ObjAddr Status

Hash(LineAddr): Data Status

Type

LineAddr

ObjAddr StatusDatum

A Cache Register (CReg)

A Cache Line

A Line Associative Register (LAR)

Name:

A Register

Datum

An example using Data LARs. In the following C code,
suppose a[i], a[j], and a[k] are ambiguously aliased. The
LAR code not only reduces memory loads, but also provides
implicit lazy stores. Because each LAR records the current object
position within its data field, each LAR is type tagged, and type
information need not be encoded within arithmetic instructions.
The LAR code as written is scalar; however, if the data are
properly aligned, replacing Mul and Add with Mulp and Addp
would perform the SWAR parallel operations on a “line” of data
at a time. In any case, scalar or parallel, the LAR code makes no
more than 3 memory references – fewer if any of the lines have
the same base addresses.

C Code Conventional RISC LAR RISC
float *a; Lea r0,a[j] Ldf r1,a[j]

... Ldf r1,@r0 Ldf r3,a[k]

a[i]=a[j]*a[k]; Lea r2,a[k] Ldf r5,a[i]

a[k]=a[j]+a[k]; Ldf r3,@r2 Mul r5,r1,r3

Mulf r4,r1,r3 Add r3,r1,r3

Lea r5,a[i]

Stf r4,@r5

Ldf r1,@r0

Ldf r3,@r2

Addf r6,r1,r3

Stf r6,@r2

Instruction LARs. Instruction LARs remove the instruction fetch
process from the execution of each instruction, replacing it with
separate, explicit, instructions that load of compressed blocks of
instructions. If a load requests a block that is already in another
instruction LAR, the decoded instruction block is logically copied
without any memory activity. Control flow targets are specified
using an instruction offset within an instruction LAR, rather than
by comparatively lengthy memory addresses. The overall result
is a smaller memory footprint, improved utilization of memory
bandwidth, and complete freedom from misses during instruction
processing.
Status. Krishna Melarkode’s 2004 M.S. Thesis, Line Associative
Registers, is the most complete document describing the new con-
cepts in LARs beyond CREGs. A number of theses are currently
in progress; watch Aggregate.Org for more information.
This document should be cited as:
@techreport{sc07lar,

author={Henry Dietz and William Dieter},

title={You Can’t Always Get What You Want},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc07lar.pdf},

month={Nov}, year={2007}}


