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Unstructured Search

* An associative memory allows lookup by key
* There is an unordered array of key values
* Find the entry associated with a given key
* The value returned is either the entry index
or indication that the key was not found

* Unfortunately, superpositions are not arrays

* Implement mapping of the array index - key
as a function, which is not always easy



Unstructured (?) Search

* To find a specific key value, assume that we
have a function f() that returns 1 for an index
that would map index - the desired key

* Assume function f() is an efficient circuit
* Not a “promise” because f() doesn’t need to
have a specific structure
* Might be hard to find such an f()

* Does conventionally creating f() find the key?



Can’t | Just Reverse Execute?

* If you have a function built entirely using
reversible logic, you can find the input that
generates a given output by reverse execution
* Doesn’t require a quantum computer
* Costis a single evaluation

* Only works if
* There is just a single x such that f(x)=y
* There are no ancilla with unknown values



Quantum Unstructured Search

Given an efficient circuit implementing
f(x) - {0,1}, find a value y for which f(y) - 1

Output is either
*y
* indication that no solution exists



Complexity for n-bit x

* Conventional algorithms
 Deterministic: 2" evaluations of f()
* Probabilistic: low probability if less than O(2")

* Grover’s quantum algorithm is O(V (27)),
which is O(2"?)



Create A Phase Query Gate

* Convert f(x) into a unitary function
Urla>|x> - [aM(x)>|x>

* Phase Query Gate for f() is
Zi x> - (-1)™W|x>

) = — (-1)™|x)




Example Phase Query Gate

* Suppose f(x) is 1 only when x is 101
* Phase Query Gate for f() is

* Of course, f(x) need not be this obvious...



Need Phase Query n-bit OR

* Controlled Z is controlled by AND...
a OR b is NOT ((NOT a) AND (NOT B))

* Phase Query Gate for OR is




Grover’s Algorithm

* |nitialize n-bit inputs to H|0>

* Apply the Grover operation one or more times:
G=HZor H Z;

e Measure a candidate solution



Grover’s Algorithm Example

* Suppose f(x) is 1 only when x is 101

* Applying the Grover operation once:

e Measure a candidate solution


https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[%22H%22,%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,%22%E2%97%A6%22,%22%E2%80%A2%22,%22Z%22],[%22H%22,%22H%22,%22H%22,%22H%22],[1,1,1,%22X%22],[%22%E2%97%A6%22,%22%E2%97%A6%22,%22%E2%97%A6%22,%22Z%22],[1,1,1,%22X%22],[%22H%22,%22H%22,%22H%22,%22H%22]]%7D

Grover’s Algorithm Example

* Suppose f(x) is 1 only when x is 101

* Applying the Grover operation twice:

e Measure a candidate solution


https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[%22H%22,%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,%22%E2%97%A6%22,%22%E2%80%A2%22,%22Z%22],[%22H%22,%22H%22,%22H%22,%22H%22],[1,1,1,%22X%22],[%22%E2%97%A6%22,%22%E2%97%A6%22,%22%E2%97%A6%22,%22Z%22],[1,1,1,%22X%22],[%22H%22,%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,%22%E2%97%A6%22,%22%E2%80%A2%22,%22Z%22],[%22H%22,%22H%22,%22H%22,%22H%22],[1,1,1,%22X%22],[%22%E2%97%A6%22,%22%E2%97%A6%22,%22%E2%97%A6%22,%22Z%22],[1,1,1,%22X%22],[%22H%22,%22H%22,%22H%22,%22H%22]]%7D

Grover’s Algorithm Example

Usually expressed as functions of N = 2"

Rotations reinforce the probabilities
0 = sin}(vV(1/27) = sin1(2?) = 27

For a unique single solution, the number of
useful repeats of G is t = floor((/4)v(2")),
which is t = floor(1t2"?=)

Probability of success for a unique value is
p(n,1) = sin®((2t+1) 0) in t applications of G



Grover’s Algorithm Example

* Probability of success for a unique value is
p(n,1) = sin’((2t+1) 6) in t applications of G

n 1 2 3 4 5 6 7 8 9 10 20
2" 2 4 8 16 32 64 128 |256 |512 (1024 |1IM

t 1.11 (157 |2.22 |3.14 |4.44 |6.28 |8.88 |12.56 |17.77 |25.13 |804.2
P 05 (094 090 |0.89 0.99 |0.99 |0.99 |0.99 |0.99 |0.99 |0.99

* O(2"%) values for tis still exponential in n




s Solutions

* Usually expressed as functions of N = 2"

* Rotations reinforce the probabilities
0 = sin(vV(s/2") and t = floor(1t/(40))

* Probability of success for s values is
p(n,s) > max(1-s2, s2™")

If you prefer: p(N,s) > max(1-s/N, s/N)



Grover’s Algorithm Example

Usually expressed as functions of N = 2"

Rotations reinforce the probabilities
0 = sin}(vV(1/27) = sin1(2?) = 27

For a unique single solution, the number of
useful repeats of Gis t = [(T/4)V(27)],
which is t = | t2"7%¢]

Probability of success for a unique value is
p(n,1) = sin®((2t+1) 0) in t applications of G



Unknown Number of Solutions

 Worst case is still O(272)

e Choose randomte&{l, ..., |nN/A4|}
Probability > 40% finding solution (if exists)

* Alternative approach:
1.SetT =1
2. Apply G with randomt&e {1,..., T}
3. Stop if solution found or timeout with no
solution; otherwise, T =[ 1.25T ] and go to 2.



Why Grover’s Algorithm?

It can be shown to be asymptotically optimal
It can be applied to many problems

This technique can be generalized to amplify
probabilities for solutions in other problems...
this is important because it gives some control
over which superposed value is measured

An excellent mathy explanatlon |s at

ttps://quan ing/en/courses/fundame er-algorithm/introduction


https://quantum.cloud.ibm.com/learning/en/courses/fundamentals-of-quantum-algorithms/grover-algorithm/introduction
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