
Grover’s Algorithm

EE599-001 & EE699-010, Spring 2026

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd


Unstructured Search

• An associative memory allows lookup by key
• There is an unordered array of key values
• Find the entry associated with a given key
• The value returned is either the entry index

or indication that the key was not found

• Unfortunately, superpositions are not arrays

• Implement mapping of the array index→key
as a function, which is not always easy



Unstructured (?) Search

• To find a specific key value, assume that we
have a function f() that returns 1 for an index
that would map index →the desired key

• Assume function f() is an efficient circuit
• Not a “promise” because f() doesn’t need to

have a specific structure
• Might be hard to find such an f()
• Does conventionally creating f() find the key?



Can’t I Just Reverse Execute?

• If you have a function built entirely using
reversible logic, you can find the input that
generates a given output by reverse execution
• Doesn’t require a quantum computer
• Cost is a single evaluation

• Only works if
• There is just a single x such that f(x)=y
• There are no ancilla with unknown values



Quantum Unstructured Search

• Given an efficient circuit implementing
f(x)→{0,1}, find a value y for which f(y)→1

• Output is either
• y
• indication that no solution exists



Complexity for n-bit x

• Conventional algorithms
• Deterministic: 2n evaluations of f()
• Probabilistic: low probability if less than O(2n)

• Grover’s quantum algorithm is O(√(2n)),
which is O(2n/2)



Create A Phase Query Gate

• Convert f(x) into a unitary function
Uf:|a>|x> → |a^f(x)>|x>

• Phase Query Gate for f() is
Zf:|x> → (-1)f(x)|x>



Example Phase Query Gate

• Suppose f(x) is 1 only when x is 101

• Phase Query Gate for f() is

• Of course, f(x) need not be this obvious…



Need Phase Query n-bit OR

• Controlled Z is controlled by AND...
a OR b is NOT ((NOT a) AND (NOT B))

• Phase Query Gate for OR is



Grover’s Algorithm

• Initialize n-bit inputs to H|0>

• Apply the Grover operation one or more times:
G = H ZOR H Zf

• Measure a candidate solution



Grover’s Algorithm Example

• Suppose f(x) is 1 only when x is 101

• Applying the Grover operation once:

• Measure a candidate solution

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[%22H%22,%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,%22%E2%97%A6%22,%22%E2%80%A2%22,%22Z%22],[%22H%22,%22H%22,%22H%22,%22H%22],[1,1,1,%22X%22],[%22%E2%97%A6%22,%22%E2%97%A6%22,%22%E2%97%A6%22,%22Z%22],[1,1,1,%22X%22],[%22H%22,%22H%22,%22H%22,%22H%22]]%7D


Grover’s Algorithm Example

• Suppose f(x) is 1 only when x is 101

• Applying the Grover operation twice:

• Measure a candidate solution

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[%22H%22,%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,%22%E2%97%A6%22,%22%E2%80%A2%22,%22Z%22],[%22H%22,%22H%22,%22H%22,%22H%22],[1,1,1,%22X%22],[%22%E2%97%A6%22,%22%E2%97%A6%22,%22%E2%97%A6%22,%22Z%22],[1,1,1,%22X%22],[%22H%22,%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,%22%E2%97%A6%22,%22%E2%80%A2%22,%22Z%22],[%22H%22,%22H%22,%22H%22,%22H%22],[1,1,1,%22X%22],[%22%E2%97%A6%22,%22%E2%97%A6%22,%22%E2%97%A6%22,%22Z%22],[1,1,1,%22X%22],[%22H%22,%22H%22,%22H%22,%22H%22]]%7D


Grover’s Algorithm Example

• Usually expressed as functions of N = 2n

• Rotations reinforce the probabilities
θ = sin-1( (1/2√ n)) = sin-1(2-n/2)  ≈ 2-n/2

• For a unique single solution, the number of
useful repeats of G is t  floor(( /4) (2≈ π √ n)),
which is t  floor( 2≈ π n/2-2)

• Probability of success for a unique value is
p(n,1) = sin2((2t+1) )θ  in t applications of G



Grover’s Algorithm Example

• Probability of success for a unique value is
p(n,1) = sin2((2t+1) ) in t applications of Gθ

• O(2n/2) values for t is still exponential in n

n 1 2 3 4 5 6 7 8 9 10 20

2n 2 4 8 16 32 64 128 256 512 1024 1M

t 1.11 1.57 2.22 3.14 4.44 6.28 8.88 12.56 17.77 25.13 804.2

p 0.5 0.94 0.90 0.89 0.99 0.99 0.99 0.99 0.99 0.99 0.99



s Solutions

• Usually expressed as functions of N = 2n

• Rotations reinforce the probabilities
 = sinθ -1( (√ s/2n)) and t = floor( /(4 ))π θ

• Probability of success for s values is
p(n,s) ≥ max(1-s2-n, s2-n)

If you prefer: p(N,s) ≥ max(1-s/N, s/N)



Grover’s Algorithm Example

• Usually expressed as functions of N = 2n

• Rotations reinforce the probabilities
θ = sin-1( (1/2√ n)) = sin-1(2-n/2)  ≈ 2-n/2

• For a unique single solution, the number of
useful repeats of G is t  ( /4) (2≈ ⌊ π √ n) ,⌋
which is t  2≈ ⌊π n/2-2⌋

• Probability of success for a unique value is
p(n,1) = sin2((2t+1) )θ  in t applications of G



Unknown Number of Solutions

• Worst case is still O(2n/2)

• Choose random t  {1, . . . ,  N/4 }∈ ⌊π ⌋
Probability ≥ 40% finding solution (if exists)

• Alternative approach:
1. Set T = 1
2. Apply G with random t  {1, . . . , T}∈
3. Stop if solution found or timeout with no

solution; otherwise, T =  1.25T  and go to 2.⌈ ⌉



Why Grover’s Algorithm?

• It can be shown to be asymptotically optimal

• It can be applied to many problems

• This technique can be generalized to amplify
probabilities for solutions in other problems…
this is important because it gives some control
over which superposed value is measured

• An excellent mathy explanation is at
https://quantum.cloud.ibm.com/learning/en/courses/fundamentals-of-quantum-algorithms/grover-algorithm/introduction 

https://quantum.cloud.ibm.com/learning/en/courses/fundamentals-of-quantum-algorithms/grover-algorithm/introduction

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

