

Grover's Algorithm

EE599-001 & EE699-010, Spring 2026

Hank Dietz

<http://aggregate.org/hankd/>

Unstructured Search

- An associative memory allows lookup by key
 - There is an unordered array of key values
 - Find the entry associated with a given key
 - The value returned is either the entry index or indication that the key was not found
- Unfortunately, **superpositions are not arrays**
- **Implement mapping of the array index → key as a function, which is not always easy**

Unstructured (?) Search

- To find a specific key value, assume that we have a function $f()$ that returns 1 for an index that would map index \rightarrow *the desired key*
- Assume function $f()$ is an efficient circuit
 - Not a “promise” because $f()$ doesn’t need to have a specific structure
 - Might be hard to find such an $f()$
 - Does conventionally creating $f()$ find the key?

Can't I Just Reverse Execute?

- If you have a function built entirely using reversible logic, you can find the input that generates a given output by reverse execution
 - Doesn't require a quantum computer
 - Cost is a single evaluation
- Only works if
 - There is just a single x such that $f(x)=y$
 - There are no ancilla with unknown values

Quantum Unstructured Search

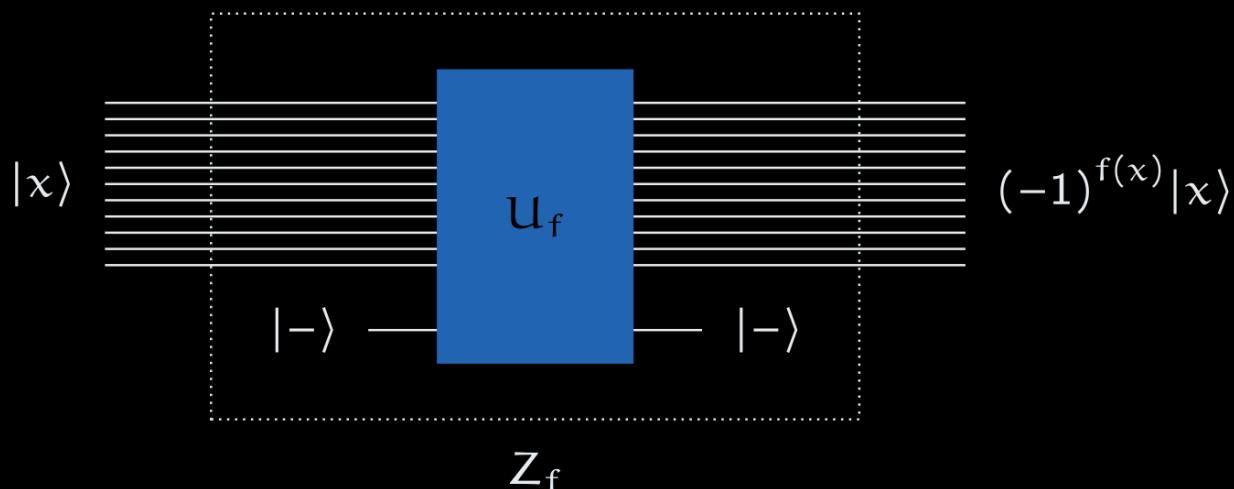
- Given an efficient circuit implementing $f(x) \rightarrow \{0,1\}$, find a value y for which $f(y) \rightarrow 1$
- Output is either
 - y
 - indication that no solution exists

Complexity for n -bit χ

- Conventional algorithms
 - Deterministic: 2^n evaluations of $f()$
 - Probabilistic: low probability if less than $O(2^n)$
- Grover's quantum algorithm is $O(\sqrt{2^n})$, which is $O(2^{n/2})$

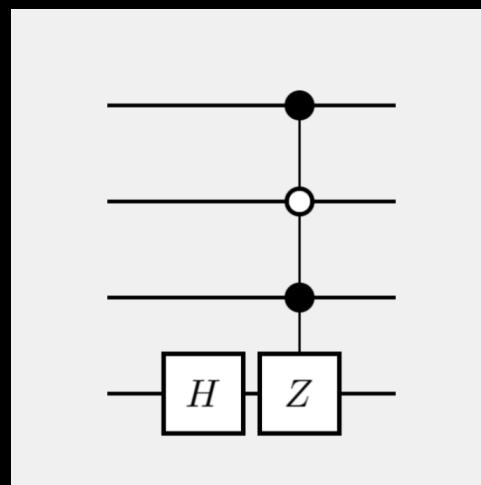
Create A Phase Query Gate

- Convert $f(x)$ into a unitary function
 $U_f: |a\rangle|x\rangle \rightarrow |a^f(x)\rangle|x\rangle$
- **Phase Query Gate** for $f()$ is
 $Z_f: |x\rangle \rightarrow (-1)^{f(x)}|x\rangle$



Example Phase Query Gate

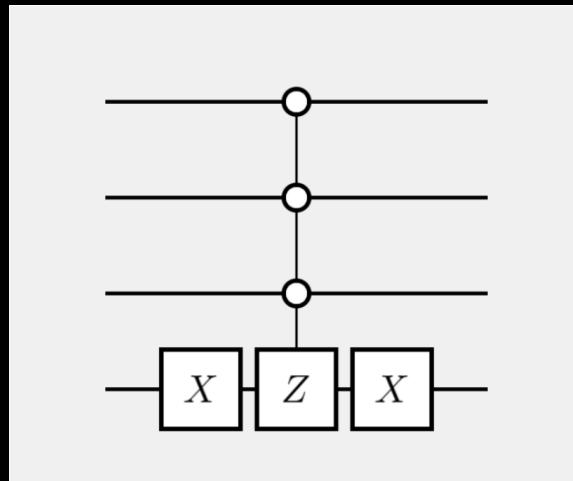
- Suppose $f(x)$ is 1 only when x is 101
- Phase Query Gate for $f()$ is



- Of course, $f(x)$ need not be this obvious...

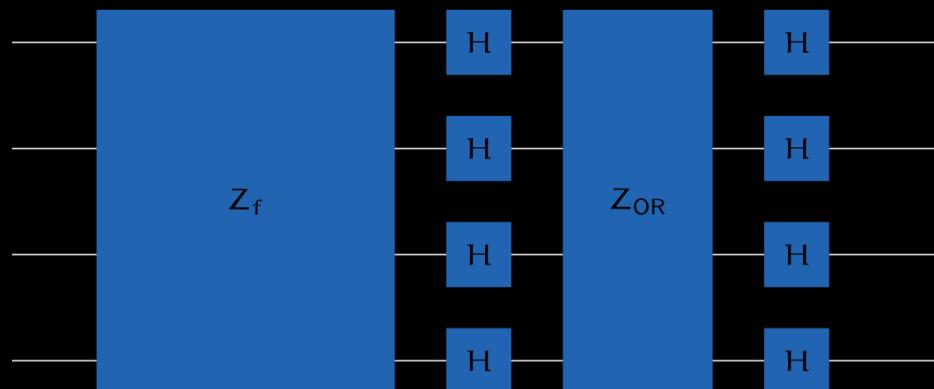
Need Phase Query n -bit OR

- Controlled Z is controlled by AND...
 $a \text{ OR } b \text{ is NOT ((NOT } a) \text{ AND (NOT } b))$
- Phase Query Gate for OR is



Grover's Algorithm

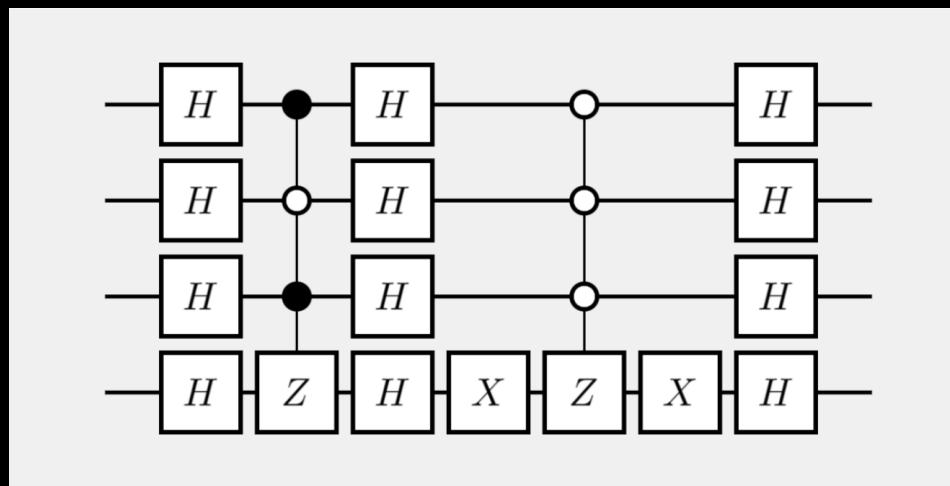
- Initialize n-bit inputs to $H|0\rangle$
- Apply the Grover operation one or more times:
$$G = H \ Z_{\text{OR}} \ H \ Z_f$$



- Measure a candidate solution

Grover's Algorithm Example

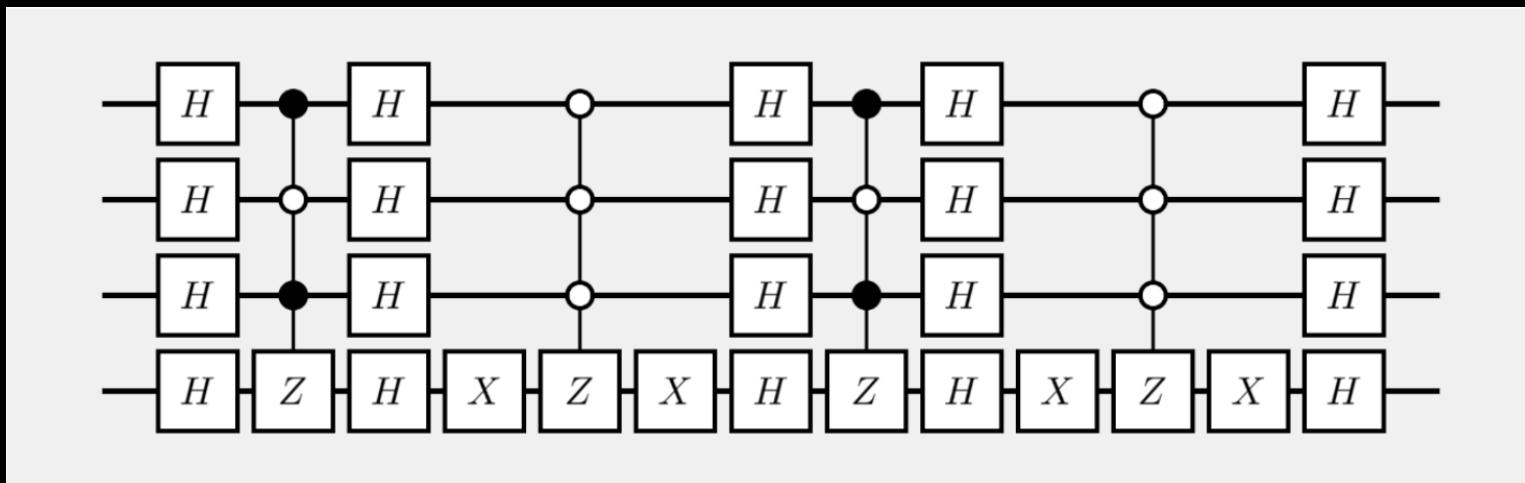
- Suppose $f(x)$ is 1 only when x is 101
- Applying the Grover operation ***once***:



- **Measure a candidate solution**

Grover's Algorithm Example

- Suppose $f(x)$ is 1 only when x is 101
- Applying the Grover operation ***twice***:



- **Measure a candidate solution**

Grover's Algorithm Example

- Usually expressed as functions of $N = 2^n$
- Rotations reinforce the probabilities
 $\theta = \sin^{-1}(\sqrt{1/2^n}) = \sin^{-1}(2^{-n/2}) \approx 2^{-n/2}$
- For a unique single solution, the number of useful repeats of G is $t \approx \text{floor}((\pi/4)\sqrt{2^n})$, which is $t \approx \text{floor}(\pi 2^{n/2-2})$
- Probability of success for a unique value is $p(n,1) = \sin^2((2t+1)\theta)$ in t applications of G

Grover's Algorithm Example

- Probability of success for a unique value is $p(n,1) = \sin^2((2t+1) \theta)$ in t applications of G

n	1	2	3	4	5	6	7	8	9	10	20
2^n	2	4	8	16	32	64	128	256	512	1024	1M
t	1.11	1.57	2.22	3.14	4.44	6.28	8.88	12.56	17.77	25.13	804.2
p	0.5	0.94	0.90	0.89	0.99	0.99	0.99	0.99	0.99	0.99	0.99

- $O(2^{n/2})$ values for t is **still exponential in n**

s Solutions

- Usually expressed as functions of $N = 2^n$
- Rotations reinforce the probabilities
 $\theta = \sin^{-1}(\sqrt{s/2^n})$ and $t = \text{floor}(\pi/(4\theta))$
- Probability of success for s values is
 $p(n,s) \geq \max(1-s2^{-n}, s2^{-n})$

If you prefer: $p(N,s) \geq \max(1-s/N, s/N)$

Grover's Algorithm Example

- Usually expressed as functions of $N = 2^n$
- Rotations reinforce the probabilities
 $\theta = \sin^{-1}(\sqrt{1/2^n}) = \sin^{-1}(2^{-n/2}) \approx 2^{-n/2}$
- For a unique single solution, the number of useful repeats of G is $t \approx \lfloor (\pi/4)\sqrt{2^n} \rfloor$, which is $t \approx \lfloor \pi 2^{n/2-2} \rfloor$
- Probability of success for a unique value is $p(n,1) = \sin^2((2t+1)\theta)$ in t applications of G

Unknown Number of Solutions

- Worst case is still $O(2^{n/2})$
- Choose *random* $t \in \{1, \dots, \lfloor \pi N/4 \rfloor\}$
Probability $\geq 40\%$ finding solution (if exists)
- Alternative approach:
 1. Set $T = 1$
 2. Apply G with *random* $t \in \{1, \dots, T\}$
 3. Stop if solution found or timeout with no solution; otherwise, $T = \lceil 1.25T \rceil$ and go to 2.

Why Grover's Algorithm?

- It can be shown to be **asymptotically optimal**
- It can be applied to many problems
- This technique can be generalized to amplify probabilities for solutions in other problems... this is important because it gives some control over which superposed value is measured
- An excellent mathy explanation is at

<https://quantum.cloud.ibm.com/learning/en/courses/fundamentals-of-quantum-algorithms/grover-algorithm/introduction>