

Quantum Circuits

EE599-001 & EE699-010, Spring 2026

Hank Dietz

<http://aggregate.org/hankd/>

Why Quantum Algorithms?

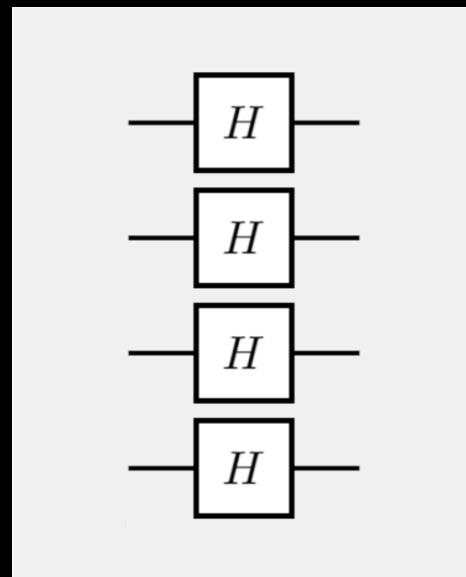
- Find a solution faster:
 - Exponentially parallel execution
 - Quantum operations reduce $O()$ complexity
- Reduce memory size required:
Holding 2^n n -bit values in n qubits
- Reduce power consumed per computation:
 - Parallel computation without parallel HW
 - Reduced $O()$ complexity reduces operations

Why Quantum Algorithms?

- Find a solution faster:
 - Exponentially parallel execution
 - Quantum operations reduce $O()$ complexity
- Reduce memory size required:
 $Holding 2^n n\text{-bit values in } n \text{ qubits}$
- Reduce power consumed per computation:
 - Parallel computation without parallel HW
 - Reduced $O()$ complexity, fewer operations

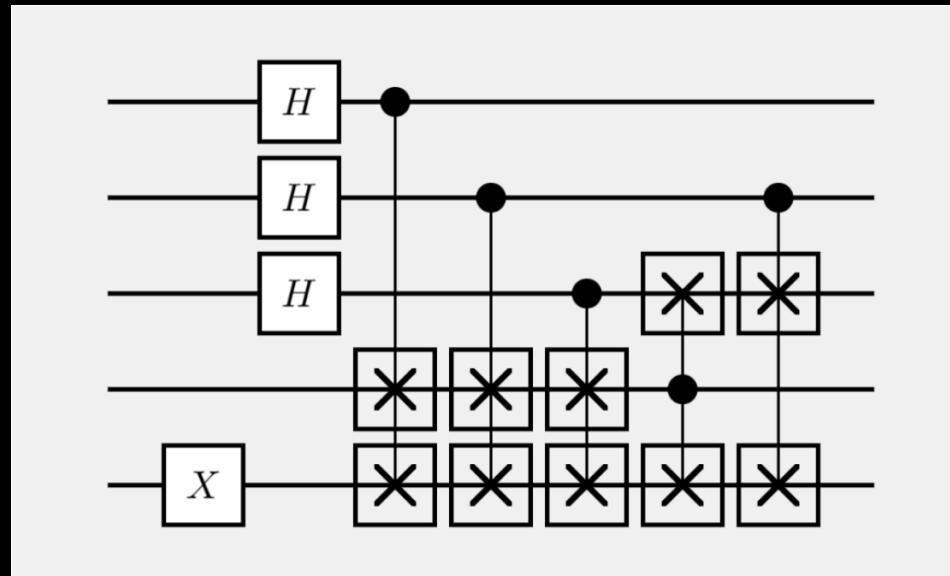
Parallel Evaluation

- Perform operation on all data values
 - Measure a randomly-selected result
 - **MuqcsCraft Random 4-bit value**



Parallel Evaluation

- Perform operation on all data values
 - Report a randomly-selected result
 - **MuqcsCraft FA**



Query Model of Computation

- Input isn't data, but a function
 - Goal is finding a property of the function by making queries against it
 - Function is treated as an **oracle**
 - Function is computable using binary logic
- The function is mapped into a unitary gate U_f
 - U_f inputs $|x\rangle|y\rangle$ and outputs $|x\rangle|y^f(x)\rangle$
 - $f(x)$ can be 0 or 1; *not necessarily* entangled
 - U_f does not have to be simple...

Deutsch's Problem

- Data isn't the input; a function $f(a)$ is
- There are 4 possible functions of one qubit:

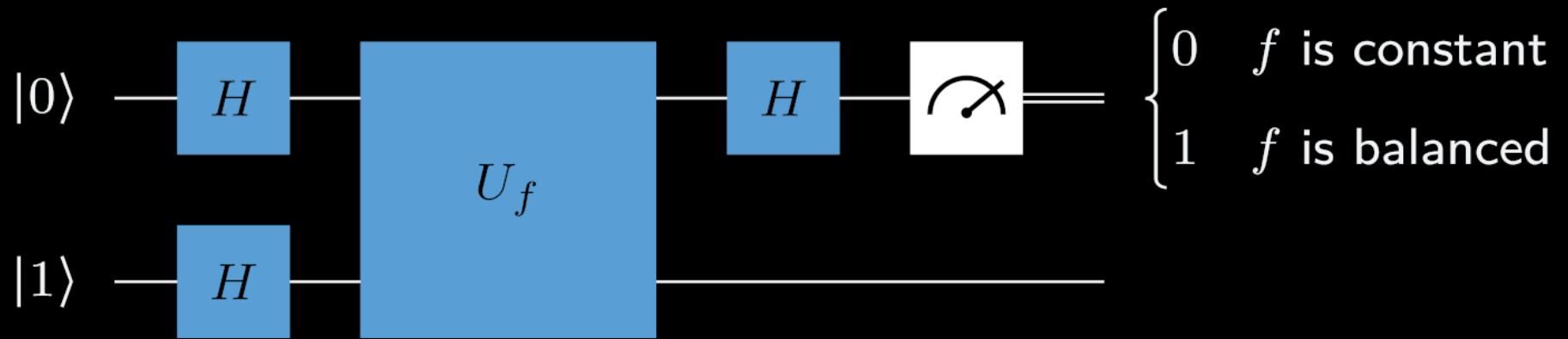
a	$f_0(a)$	$f_1(a)$	$f_2(a)$	$f_3(a)$
0	0	0	1	1
1	0	1	0	1

- A function $f(a)$ can be:
 - **Constant**: always same output: $f_0(a)$, $f_3(a)$
 - **Balanced**: $\{0,1\}$ equiprobable: $f_1(a)$, $f_2(a)$
 - Neither: *well, not in this case...*

Conventional Solution

- Query $f(a)$ twice: $f(0)$ and $f(1)$
that is testing all possible values...
- Is $f(0) == f(1)$?
 - Yes: function is **Constant**
 - No: function is **Balanced**

Deutsch's Algorithm



- **X** input passes through U_f unchanged (generally necessary to make U_f reversible)
- **Y** input is **XORed** with $f(X)$ in U_f , but **Y** is 180° out of phase with **X** (due to $|1\rangle$)
- Final $H(X)$ completes **phase kickback**

Deutsch's Algorithm

a	$f_0(a)$	$f_1(a)$	$f_2(a)$	$f_3(a)$
0	0	0	1	1
1	0	1	0	1

- U_{f0} inputs $|x\rangle|y\rangle$ and outputs $|x\rangle|y^{\wedge}f_0(x)\rangle$
 - $f_0(x)$ is 0
 - U_{f0} is $|x\rangle|y^{\wedge}0\rangle$ which is just $|x\rangle|y\rangle$
 - Thus, U_{f0} is no gates at all!
- **MuqcsCraft Uf0**, entangled **MuqcsCraft Uf0**

Deutsch's Algorithm

a	$f_0(a)$	$f_1(a)$	$f_2(a)$	$f_3(a)$
0	0	0	1	1
1	0	1	0	1

- U_{f1} inputs $|x\rangle|y\rangle$ and outputs $|x\rangle|y^{\wedge}f_1(x)\rangle$
 - $f_1(x)$ is x
 - U_{f1} is $|x\rangle|y^{\wedge}x\rangle$
 - Thus, U_{f1} is a **CNOT** x, y gate
- **MuqcsCraft Uf1**

Deutsch's Algorithm

a	$f_0(a)$	$f_1(a)$	$f_2(a)$	$f_3(a)$
0	0	0	1	1
1	0	1	0	1

- U_{f_2} inputs $|x\rangle|y\rangle$ and outputs $|x\rangle|y^{\wedge}f_2(x)\rangle$
 - $f_2(x)$ is $\sim x$
 - U_{f_2} is $|x\rangle|y^{\wedge}\sim x\rangle$ which is just $|x\rangle|\sim(y^{\wedge}x)\rangle$
 - Thus, U_{f_2} is a **CNOT x, y** , **NOT y** gate
- **MuqcsCraft Uf2**

Deutsch's Algorithm

a	$f_0(a)$	$f_1(a)$	$f_2(a)$	$f_3(a)$
0	0	0	1	1
1	0	1	0	1

- U_{f_3} inputs $|x\rangle|y\rangle$ and outputs $|x\rangle|y^{\wedge}f_3(x)\rangle$
 - $f_3(x)$ is 1
 - U_{f_3} is $|x\rangle|y^{\wedge}1\rangle$ which is just $|x\rangle|\sim y\rangle$
 - Thus, U_{f_3} is a **NOT y** gate
- **MuqcsCraft Uf3**

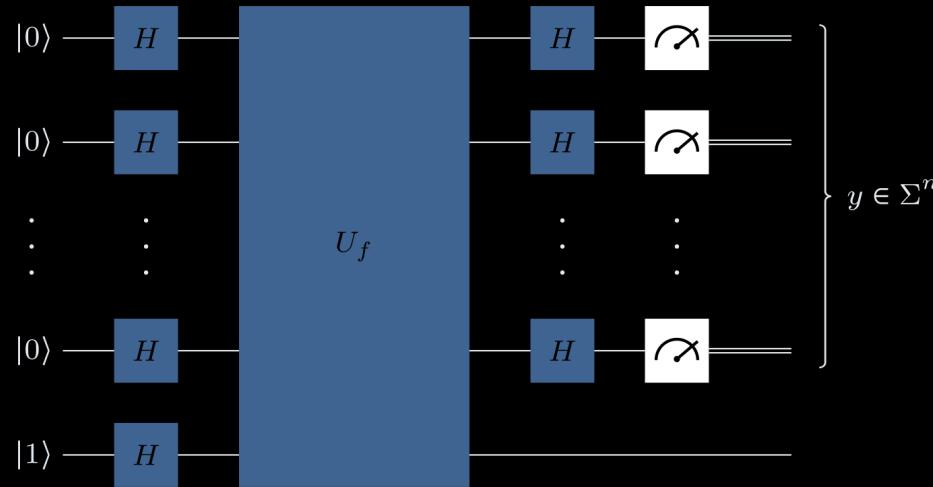
Deutsch-Jozsa Problem

- Extends Deutsch Problem to operate on a function with k inputs and one output
- Distinguishes **constant** from **balanced**, but “don’t care” about result if it is neither (i.e., if **promise** is not kept)
- Random functions are unlikely to be either constant or balanced; e.g., **AND** X_0, X_1

Conventional Solution

- Evaluate $f()$ for 2 to $2^{k-1}+1$ random inputs
- If any two evals don't return the same value, it must be balanced and can stop early
- To get a statistical answer, can stop after n evaluations that were all the same
 - If $f()$ is constant, answer is correct
 - If $f()$ is balanced, probability of error is 2^{-n+1}

Deutsch-Jozsa Algorithm



- Output 0 for constant, 1 for balanced, but 1 is if **ANY** measurement is 1 (**OR** reduction)
- **OR** reduction takes $O(k)$ operations, but U_f is evaluated just once, with 2^k parallelism

Deutsch-Jozsa Algorithm

X1	X0	0	NOT X0	AND
0	0	0	1	0
0	1	0	0	0
1	0	0	1	0
1	1	0	0	1

- $f(X1, X0) = 0$ is constant: **MuqcsCraft DJ0**
- $f(X1, X0) = \sim X1$ is balanced: **MuqcsCraft DJNOT**
- $AND(X1, X0)$ is neither: **MuqcsCraft DJAND**

Bernstein-Vazirani Problem

- Sometimes called **Fourier sampling** problem
- Given the promise that there exists a vector s such that $f(x) = s \cdot x$ for all x , find s

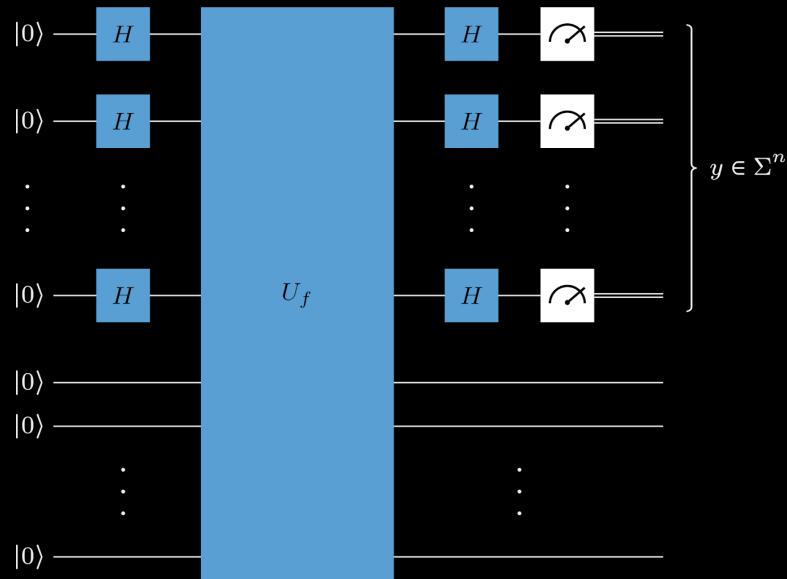
Note that: $s \cdot x = (s_0 \& x_0) \wedge (s_1 \& x_1) \dots$

- Uses Deutsch-Jozsa Algorithm
 - Measurements are weights for s
 - No conventional postprocessing (no ANY)
 - For example: **MuqcsCraft DJNOT**

Simon's Problem

- For a function with n inputs and m outputs
- Find v such that $f(x) == f(y)$ implies either:
 - $x^s == y$
 - $x == y$ (in which case $s = 0^n$)
- Requires promise that s exists...

Simon's Algorithm



- The n inputs are at the top and m outputs are at the bottom – without phase kickback
- Measurement does not directly give s...

Simon's Algorithm

- Each run of the quantum algorithm gives a randomly-selected n -bit vector y ; collect these into a binary matrix M with n columns and k rows (one for each quantum algorithm run)
- $M s$, for a column vector of s , should equal 0; thus, classical Gaussian elimination can be used to solve for s
- Classical queries only eliminate one possible s per pair of queries producing different values, so $\geq 2^{n/2-1} - 1$ **queries** are generally needed

Qiskit

- **Qiskit** is the most popular quantum circuit SDK
 - Open source software from IBM Quantum
 - Python, but includes hardware interfaces
 - Qiskit ecosystem collects related projects

<https://www.ibm.com/quantum/ecosystem>

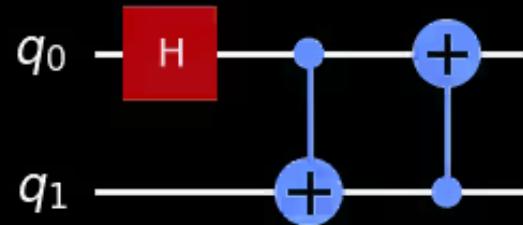
- Install Qiskit on a local machine

<https://quantum.cloud.ibm.com/docs/en/guides/install-qiskit#local>

- IBM Quantum Experience was drag-and-drop, WWW versions are now Jupyter Notebooks

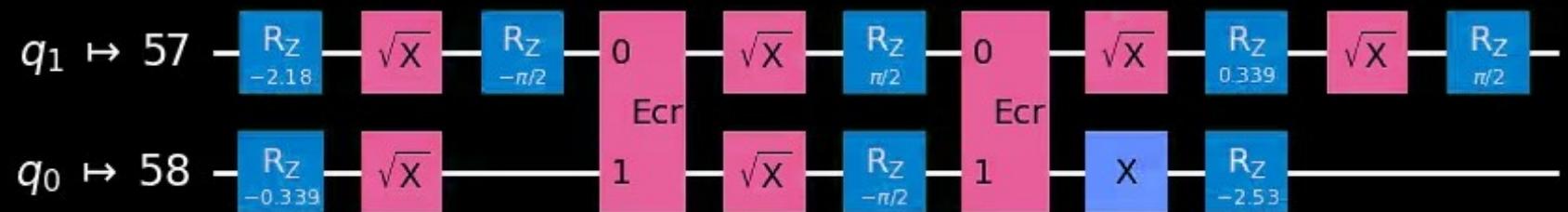
<https://quantum.cloud.ibm.com/docs/en/guides/online-lab-environments>

Transpilation



- **Transpilation** is compilation
 - Allocating specific qubits
 - Translating to supported primitive operations
 - Applies optimization and scheduling passes

Global Phase: 2π



Qiskit philosophy

- Qiskit is a library in conventional python code
- Qiskit constructs a data structure representing each quantum circuit and calls functions to perform actions on that data structure
- IBM's Qiskit in the classroom
<https://quantum.cloud.ibm.com/learning/en/modules/quantum-mechanics/get-started-with-qiskit>
- Let's look at the “Hello World” example
<https://quantum.cloud.ibm.com/docs/en/guides/hello-world>