Quantum Circuits

EE599-001 & EE699-010, Spring 2026
Hank Dietz

http://aggregate.org/hankd/

q:gz University of
Kentucky

http://aggregate.org/hankd

Why Quantum Algorithms?

* Find a solution faster:
* Exponentially parallel execution
* Quantum operations reduce O() complexity

* Reduce memory size required:
Holding 2" n-bit values in n qubits

* Reduce power consumed per computation:
* Parallel computation without parallel HW
* Reduced O() complexity reduces operations

Why Quantum Algorithms?

* Find a solution faster:
* Exponentially parallel execution
* Quantum operations reduce O() complexity

* Reduce memory size required:
Holding 2" n-bit values in n qubits

* Reduce power consumed per computation:
* Parallel computation without parallel HW
 Reduced O() complexity, fewer operations

Parallel Evaluation

* Perform operation on all data values
* Measure a randomly-selected result
* MugcsCraft Random 4-bit value

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[%22H%22,%22H%22,%22H%22,%22H%22]]%7D

Parallel Evaluation

* Perform operation on all data values
* Report a randomly-selected result
* MuqcsCraft FA

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,1,1,%22Swap%22,%22Swap%22],[1,%22%E2%80%A2%22,1,%22Swap%22,%22Swap%22],[1,1,%22%E2%80%A2%22,%22Swap%22,%22Swap%22],[1,1,%22Swap%22,%22%E2%80%A2%22,%22Swap%22],[1,%22%E2%80%A2%22,%22Swap%22,1,%22Swap%22]]%7D

Query Model of Computation

* |nputisn’t data, but a function
* Goalis finding a property of the function by
making queries against it
* Function is treated as an oracle
* Function is computable using binary logic

* The function is mapped into a unitary gate Urs
* Urinputs |[x>|y> and outputs |[x>|yAf(x)>
* f(x) can be 0 or 1; not necessarily entangled
* Urdoes not have to be simple...

Deutsch’s Problem

* Data isn’t the input; a function f(a) is

* There are 4 possible functions of one qubit:

fo (a)

fi(a)

f(a)

fa (a)

0

0

0

1

1

1

0

1

0

1

* A function f(a) can be:
* Constant: always same output: fo(a), f;(a)
* Balanced: {0,1} equiprobable: fi(a), f.(a)
* Neither: well, not in this case...

Conventional Solution

Query f(a) twice: f(0) and (1)
that is testing all possible values...

Is f(0) == f(1)7
* Yes: function is Constant
* No: function is Balanced

Deutsch’s Algorithm

0 f is constant
0) *

1 f is balanced

By

* Xinput passes through Urunchanged
(generally necessary to make Urreversible)

* Y inputis XORed with f(X) in Uy,
but Y is 180° out of phase with X (due to |1>)

* Final H(X) completes phase kickback

Deutsch’s Algorithm

fo(a)

HEY)

fa(a)

fa (a)

0

0

0

1

1

1

0

1

0

1

* Upinputs |x>|y> and outputs [x>|yAfo(x)>
e fo(x)is 0
* Upis |[x>|y*0> which is just [x>|y>
* Thus, Upis no gates at all!

* MugcsCraft Uf0, entangled MugcsCraft Uf0

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,%22X%22],[%22H%22,%22H%22],[%22H%22]]%7D

Deutsch’s Algorithm

fo(a)

fl(a)

fz(a)

f3(a)

0

0

0

1

1

1

0

1

0

1

* Usqinputs |[x>|y> and outputs [x>|yAfi(x)>
o fi(x)is x
o Ugnis |x>|yrx>
* Thus, Unis a CNOT x, y gate

* MuqcsCraft Ufl

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,%22X%22],[%22H%22,%22H%22],[%22%E2%80%A2%22,%22X%22],[%22H%22]]%7D

Deutsch’s Algorithm

fo(a)

fl(a)

fz(a)

f3(a)

0

0

0

1

1

1

0

1

0

1

* Uginputs |[x>|y> and outputs |[x>|yAfo(x)>
e f,(x)is ~x
* Ugis |[x>|yr~x> which is just |x>|~(yAx)>
* Thus, Ueris a CNOT x, y, NOT y gate

* MuqcsCraft Uf2

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,%22X%22],[%22H%22,%22H%22],[%22%E2%80%A2%22,%22X%22],[1,%22X%22],[%22H%22]]%7D

Deutsch’s Algorithm

fo(a)

fl(a)

fz(a)

f3(a)

0

0

0

1

1

1

0

1

0

1

* Uginputs |[x>|y> and outputs |[x>|yAf3(x)>
e f3(x)is 1
* Ugis |[x>|y*1> which is just [x>|~y>
* Thus, Usis a NOT y gate

* MugcsCraft Uf3

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,%22X%22],[%22H%22,%22H%22],[1,%22X%22],[%22H%22]]%7D

Deutsch-Jozsa Problem

* Extends Deutsch Problem to operate on a
function with k inputs and one output

* Distinguishes constant from balanced,
but “don’t care” about result if it is neither
(i.e., if promise is not kept)

 Random functions are unlikely to be either
constant or balanced; e.g., AND X0, X1

Conventional Solution

Evaluate () for 2 to 2“'+1 random inputs

If any two evals don’t return the same value,
it must be balanced and can stop early

To get a statistical answer, can stop after

n evaluations that were all the same

* Iff() is constant, answer is correct

* |f f() is balanced, probability of error is 21

Deutsch-Jozsa Algorithm

R -
. R
. . . .)yezn

o .

1) — e —

* Qutput O for constant, 1 for balanced, but
1is if ANY measurementis 1 (OR reduction)

* OR reduction takes O(k) operations, but
Uris evaluated just once, with 2% parallelism

Deutsch-Jozsa Algorithm

X1 X0 0 NOT X0 AND
0 0 0 1 0
0 1 0 0 0
1 0 0 1 0
1 1 0 0 1

* f(X1,X0)=0 is constant: MuqcsCraft DJO0
e f(X1,X0)=~X1is balanced: MuqcsCraft DJNOT
 AND(X1,XO0) is neither: MuqcsCraft DJAND

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22H%22,%22H%22]]%7D
https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22X%22],[%22%E2%80%A2%22,1,%22X%22],[%22H%22,%22H%22]]%7D
https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,%22%E2%80%A2%22,%22X%22],[%22H%22,%22H%22]]%7D

Bernstein-Vazirani Problem

Sometimes called Fourier sampling problem

Given the promise that there exists a vector s
such that f(x)=s-x for all x, find s

Note that: s-X = (So&Xo) A (51&X1) ...

Uses Deutsch-Jozsa Algorithm

* Measurements are weights for s

* No conventional postprocessing (no ANY)
* For example: MuqcsCraft DJNOT

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22X%22],[%22%E2%80%A2%22,1,%22X%22],[%22H%22,%22H%22]]%7D

Simon’s Problem

* For a function with n inputs and m outputs

* Find v such that f(x)==f(y) implies either:
® XAS==y
 x==vy (in which case s=0")

* Requires promise that s exists...

Simon’s Algorithm

* The ninputs are at the top and m outputs are
at the bottom - without phase kickback

* Measurement does not directly give s...

Simon’s Algorithm

* Each run of the quantum algorithm gives a
randomly-selected n-bit vector y; collect these
into a binary matrix M with n columns and
k rows (one for each quantum algorithm run)

* M s, for a column vector of s, should equal O;
thus, classical Gaussian elimination can be
used to solve for s

* (Classical queries only eliminate one possible s
per pair of queries producing different values,
so >2"%1-1 queries are generally needed

Qiskit

* Qiskitis the most popular quantum circuit SDK
* Open source software from IBM Quantum
* Python, but includes hardware interfaces
* Qiskit ecosystem collects related projects

https://www.ibm.com/quantum/ecosystem

* |nstall Qiskit on a local machine

https://quantum.cloud.ibm.com/docs/en/guides/install—-qgiskit#local

* |[BM Quantum Experience was drag-and-drop,
WWW versions are now Jupyter Notebooks

https://quantum.cloud.ibm.com/docs/en/guides/online-lab—-environments

https://www.ibm.com/quantum/ecosystem
https://quantum.cloud.ibm.com/docs/en/guides/install-qiskit#local
https://quantum.cloud.ibm.com/docs/en/guides/online-lab-environments

Transpilation

do — H T*
di i
* Transpilation is compilation
* Allocating specific qubits

* Translating to supported primitive operations
* Applys optimization and scheduling passes

Global Phase: 2n

g1 > 37 — v

https://quantum.cloud.ibm.com/docs/en/guides/transpile

Qiskit philosophy

Qiskit is a library in conventional python code

Qiskit constructs a data structure representing
each quantum circuit and calls functions to
perform actions on that data structure

IBM’s Qiskit in the classroom

https://quantum.cloud.ibm.com/learning/en/modules/quantum—-mechanics/get—-started-with—-qgiskit

Let’s look at the "Hello World” example

https://quantum.cloud.ibm.com/docs/en/guides/hello-world

https://quantum.cloud.ibm.com/learning/en/modules/quantum-mechanics/get-started-with-qiskit
https://quantum.cloud.ibm.com/docs/en/guides/hello-world

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

