Keeping Current Seminar

What Every Computer Scientist Should Know
About Quantum Computing

March 5, 2025

Prof. Henry Dietz
Electrical & Computer Engineering

“Araros University of

Kentucky.

Abstract

Last November, El Capitan officially became the world's fastest supercomputer. It claimed that record
using 11,039,616 cores and about 30MW. About a month later, Google Quantum Al announced that
their Willow quantum computer chip "performed a standard benchmark computation in under five
minutes that would take one of today’s fastest supercomputers 10 septillion (that is, 10725)

years." One could scale-up a supercomputer like El Capitan to match the performance claimed by
Willow, but that machine would require the energy output of billions of Suns! The catch is that most
computations that you can do in under five minutes on a $3 microcontroller are not even theoretically
possible on a Willow chip...

This talk will briefly explain what every computer scientist should know about quantum computing.
We will do that without getting into details of quantum physics that Einstein called "spooky" and
without discussing how Schrodinger contemplated abusing his cat. Instead, we will focus on what
kinds of computational tasks quantum computers really can accomplish more efficiently than
conventional machines, what they cannot do and why not, and what the main problems are in
building practical quantum computers.

University of

Kentucky.

How Computers Get Faster:
Moore’s Law

* 1965 prediction
— Not about chip speed
— Circuit complexity 2X
every 18-24 months

O=MNUWAOOANDOO—-—MNWLOOD
T VYT YoY%V T YT

* Speedup Is mostly about
parallel processing

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

Moore’s Law: lhc numhu‘ of tr anslstm s on mluoclnps doublcs every L\A 0 y

Moore’s Law Is still sort-of OK...

Performance Development

(N Our World
. in Data

Moore's law describes tt hat the number of tr e
This advancement is important (v rﬂm of technological pr z‘m()\m' pu(((?f((m\)lﬂ(h
Transistor count
50,000,000,000 ® 10 EFlop/s
RN p "f..
10,000,000,000) el A
&34 LN 1 EFlop/s ‘."' Assan
5,000,000,000 A {9 AAAA
: t 3 P $% o®®
. 388,83, 100 PFlopl/s ‘0' WL
1,000,000,000 . $o8,.% ‘.o AMAAAA
L X3 v i A
500,000,000 A2 N ; 10 PFlop/s ...0 “
s ke o nanes
100,000,000 P 8 1 PFlop/s &® and s
50,000,000 Tgie e $ = ’0. asast _.-"
$o ® g 100 TFlop/s o & a
10,000,000 < 'f JYVVON -
Xt o @ e
5,000,000 . a 10 TFlop/s &* r Y _-'
A
A o aha -
a ahAA "
1,000,000 > ® 1 TFlop/s -~
A u
500,000 * ® ks -
® 100 GFlop/s u
- A L
* *® [
100,000 * -".
50,000 10 GFlop/s ...-
*e . o A4 "
* 1 GFlop/s -
10,000 |, » -
® o
5,000
. & 100 MFlop/s
> 1990 1995 2000 2005 2010 2015 2020 2025
1,000
O AV A A0 R PP ® Lo qb IR S S G S S BN G N
e M A I R A S R S S SR S S Top500.0rg Lists
St se Wikiped ; Year in which the ml(lochlp was first introduced
c { 1 ar at k 1 t ors Ha tchie and X Roser
® Sum A 71 = #500

Parallel Processing

* Break program into N pieces that can execute

simultaneously

— Scalable: bigger N, more speedup

— Modular hardware

— Can be fault tolerant using redundancy

* This scales up forever, right?

a5y 3
X
SN |:||'||'m ;
— b
= B
. : e

3 Wmmmm N AR ~

El Capitan supercomputer:
11,039,616 cores, 2.746 Exaflop/s
Cost approx. $600M, 29.6 MW

All The Bad News

42 Years of Microprocessor Trend Data

* Moore’s Law slowing .t

Transistors
(thousands)

e Power/transistor v«
slower than
transistors/chip A

Frequency (MHz)

Typical Power
- (Watts)

Number of

10" F | Logical Cores
[] [] 100 B _
. I ndIVIdua.l Ops nOt 1970 1980 1990 2000 2010 2020

Year

-
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

The Solace of Quantum

* Massively-parallel processing without
massively parallel hardware

* Not limited by continuation of Moore’s Law;
efficiently solve NP-complete problems?

* Potentially very low power consumption per unit
computation performed

Quantum Computing

 State-of-the-art conventional processor chips
already depend on quantum phenomena, but
just iImplement conventional logic with it

* Quantum Computing is about using quantum
phenomena to implement a different model
— Quantum gates
— Other models (e.qg., Adiabatic optimization)

Is This A Quantum Computer?
\

Is This A Quantum Computer?
\

Yup!

IBM Q

Is This A Quantum Computer?

Is This A Quantum Computer?

Nope!

TV show:
D] AVAS

Is This A Quantum Computer?

Is This A Quantum Computer?

Yup!

Google
Sycamore

Is This A Quantum Computer?

Is This A Quantum Computer?

Yup!

SpinQ

Gemini Mini
~$8K

Is This A Quantum Computer?

Is This A Quantum Computer?

Nope.

PBP

Not quantum, but
similar properties

Conventional Computing

* Memory Is made of Bits, each holding O or 1
— Bit values reliably persist forever
— Every bit can be accessed by addressing

* Processor (perhaps one of many in a system)
— (Gates: AND, OR, XOR, NOT, NAND, NOR, MUX...
— Fanout is allowed (e.g., FOF = fanout of 4)

Quantum Computing

* Memory is made of Qubits, each holding a
probability density function over O and 1
— Qubit value collapses to O or 1 when read
— Values have a limited lifespan (decoherence)

* Processor (really PIM: processors in memory)
— (Gates: NOT, CNOT, CCNOT, SWAP, CSWAP...
— Fanout is not allowed

Bloch Sphere Qubit Model

- |(?> 0. |v)) = cos(8/2)[0) + €'”sin(6/2)|1)
/ = cos(0/2)|0) +
\f& (cos ¢ + isin @) sin(6/2)|1)
where 0 < 6 <mand 0 < ¢ < 27
a1

* Probability by coordinates on sphere surface

* VValue of a Qubit is really a wave function

But Where’s The Parallelism?

* Bloch sphere is one gqubit in superposition

* Multiple qubits can be entangled so that
E Qubits hold a probability density function
over all 25-bit values
— Each qubit holds up to 2F bits
— One operation on one qubit gives 2F results

Some Quantum Computers

*IBM . 1,121 superconducting
*China’s . 504 superconducting
. . 105 superconducting
. Ankaa-3: 84 superconducting

. . 64 superconducting, 10 spin

Some Detalils About Willow...

Qubit grid
] o @He)
* Willow “connectivity” Is gg
GG
3.47 average, 5 max
P EI GG EICICICE
* Gate(q): 0.036% error @ e e e e e e e e e @
. (G R G
Gate(q,q): 0.14%
Measurement: 0.67%
I oI
* Coherent for ~98ps, 40 gates X

More Quantum Computers

Tunnel Falls: 12 spin
Majorana 1: 8 topological
. 56 trapped ion
. 36 trapped ion

{
‘ /i 14
.\//r
r l. .

SpinQ: ,

Photonic Quantum Computers

. photonic chips
. photonic chips

Not As Programmable...

: 5000+ adiabatic guantum annealing
. 12 boson sampling photonic
. 1 photonic

85 [Projecors [Emoun [LageFoma [Everyhing @ Meatings sidemeny

Not Quantum

. : Parallel Bit Pattern

- Entangled superposition via symbolic comp.

- Qubit = pbit (well, sort-of...)

- 1024+ pbits

-6 to 32-way
entangled

-10-way 1024 pbits
on a $3 micro!

Conventional Logic Gates

llllll Outputs
ﬂ — NOT gate A B |AND NAND OR NOR XOR XNOR
NOR A A 0 0 0 1 0 1 o0 1
0 1 0 1 o 1 1| 0 1 0
NOT 1 o 1 0 0 1 1 0 1 0
1 1 1 0 1 0 0O
—

NAND XNOR

e Inputs are absorbed
« OQutput is generated, can drive multiple inputs

Quantum Gate Types: Pauli

— X — — Y — Z —

* Pauli X Is also known as NOT
— Rotates Bloch Sphere around X by 1 radians
— Functions like conventional NOT
— NOT IS ItS own Inverse

e Pauli Y rotates around Y and Pauli z around Z

Quantum Gate Types: CNOT

®
(1N

| L/
* CNOT is the Controlled NOT gate
— Top Input Is control, passes thru unchanged
— Bottom input is inverted where control is 1
— Both inputs can’t be the same Qubit
— Similar to conventional XOR gate

Quantum Gate Types: Toffoli

.
 Toffoli is also known as CCNOT,
Controlled Controlled NOT ®
— A classical universal gate
— Top two Inputs pass unchanged <>

— Bottom input Is inverted where

both control inputs are 1
— BehavesllikeCc = (A AND B) XOR C

Quantum Gate Types: SWAP

><

X

« SWAP exchanges values of two Qubits
— Seems pointless...
but this Is a reversible assignment

Quantum Gate Types: Fredkin

* Fredkin is also known as CSWAP, *
Controlled swaP
— Acclassical universal gate... ><
and billlard-ball conservative
— Top Input passes unchanged ><

— Bottom inputs are swapped
where top control input is 1
— Behaves like paired conventional MUXes

Quantum Gate Types: Hadamard

H —

 Hadamard is not like any conventional gate
— A Qubit can only be Initialized to O or 1
— Hadamard operator converts that into the
equiprobable superposed state: 50% 0, 50% 1

If applied in parallel to E Qubits, the result Is the
equiprobable E-way entangled superposition

Equiprobable E-Way Entangled Superposition?

* Up to this point, nothing about Quantum
Computing sounded better than conventional...

* Suppose we apply H in parallel to 16 Qubits?
— Those 16 Qubits will hold all 65,536 possible
16-bit values with equal probabilities
— Any single operation on any of those Qubits
will effectively operate on all 65,536 values

Parallel processing without parallel hardware!

Quantum Gate Types: Measurement

— 4 =

« Measurement collapses a superposition
- Superposed Qubit becomes either 0 or 1

— Superposed probabllity density function is
randomly sampled, determines odds of O vs. 1

Exponentially cheap parallel computation...
but you only get to read-out one answer per run

Let’s Build A 1-Bit Full Adder

P —@ P
9 ® ® q
carry & K—K— carry

L —XK K —K—e parity
1 KK KKK ¢

{carry, parity} = p + q + carry

Let’s Build A 1-Bit Full Adder

KREQC Program

// 1-bit full adder
p=1;

q=1;

carry=0;

parity=0;

9=1;

CSWAP(p, parity, q);
CSWAP(q, parity, qg);

(

(

CSWAP(carry, parity, g);

CSWAP(parity, carry, g);
(

CSWAP(q, carry, g);

Simulation Output

QUBIT

32
CSWAP

32
CSWAP

32
CSWAP

32
CSWAP

32
CSWAP

32

64/64

H_—_—_—_—_—_

64

64

64

g parity carry

I 0 | 0 |
X===o=n- X=====n- |
I 64 | 0 |
 CREERRE) CEEER |
I 0 | 0 |
X=====-- X====--- @
I 0 | 0 |
X=====-- @------- X
I 0 | 0 |
X===-=-- |------- X
| 0 | 64 |
0 0 1

0 0 1

64

64

Now Give It Superposed Input

KREQC Program

// 1-bit full adder

p=1;

q=0;

carry=7?;

parity=0;

g=1;

CSWAP(p, parity, g);
CSWAP(q, parity, qg);
CSWAP(carry, parity, g);
CSWAP(parity, carry, g);
CSWAP(qg, carry, g);

Simulation Output

QUBIT
CSWAP
CSWAP
CSWAP
CSWAP

CSWAP

32/64
32/64

32

32

32

32

32

32

(O e e ——

g parity carry

64 | 0 | 32 |
X=====--- X====m-- |

0 | 64 | 32 |
X====e-- X====m-- |

0 | 64 | 32 |
X====o-- X====n-- @

32 | 32 | 32 |
X=-====-- @------- X

32 | 32 | 32 |
 CEEREEE |-=-=----- X

32 | 32 | 32 |
1 0 1

g parity carry

0 1)

1 0 1

64

64

KREQC Program

// 1-bit full adder

g=1;

CSWAP(p, parity, g);
CSWAP(q, parity, g);
CSWAP(carry, parity, g)
CSWAP(parity, carry, g)
CSWAP(qgq, carry, qg);

.
!
.
!

Simulation Output

QUBIT
CSWAP
CSWAP
CSWAP
CSWAP

CSWAP

8/64
8/64
8/64
8/64
8/64
8/64
8/64
8/64

32

32

32

32

32

32

l_l——_———_————

64

32

32

32

48

32

[l ol o NoNoNo e

parity
0|

RPOOORrRKRHRFLO

carry

O FHFORFROOK

o CNoNoN Tl CNoN e

32

32

o——————-——— 0 —T

COrHROHHROHHHT

Programming:

giskit import QuantumCircuit

gqiskit.quantum_info import SparsePauliOp

gqiskit.transpiler.pres

Programming:

Q#
// The Q# compliler automatically detects the Main() operation as the entry polnt.

operation Main() : Result {
Allocate a qubit. By default, it's 1in the 0 state.

use q = Qubit();

// Apply the Hadamard operation, H, to the state.
; It now has a 50% chance of being measured as 0 or
H(q):
// Measure the qubit in the Z-basis.
let result = M(q);
// Reset the qubit before releasing 1it.
Reset(q);
// Return the result of the measurement.
return result;

Programming:

void pbitripple() {

pbit a0(0), al(0), a2(0), a3(0);
pbit b0(1), bl(0), b2(0), b3(0);
pbit z(0), x(0);

H(a0, 0); // unlike Qubits,

H(al, 1); // must specify groups of
H(a2, 2); // entanglement channels
H(a3, 3); // for Hadamard gates
CNOT (al,bl); CNOT(a2,b2);

CNOT (a3,b3); CNOT(al,x);

CCNOT (a0,b0,x) ; CNOT(a2,al); void pintsqrt (int val) {

CCNOT (x,bl,al); CNOT(a3,a2); pint a(val); // 8-bit number

CCNOT (al,b2,a2); CNOT(a3,z); pint b = pint(0) .Had(4); // dim 0-3

CCNOT (a2,b3,z); NOT(bl); pint ¢ = (b * b); // square them

NOT (b2) ; CNOT (x,bl); pint d = (c == a); // select answer #include “pbp.h”

CNOT (al,b2); CNOT(a2,b3); int pos = d.First();

CCNOT (al, b2, a2); printf ("Square root of %d is %d\n", void pintfactor (int val) {

CCNOT (x,bl,al); val, pos); pint a(val); // 8-bit number

CNOT (a3, a2); NOT(b2); } pint b = pint(0) .Had(4); // dim 0-3
CCNOT (a0,b0, x) ; CNOT(a2,al); pint ¢ = pint (0) .Had(4,4); // dim 4-7

NOT (bl); CNOT(al, x);

pint d = b * ¢; // multiply 'em
CNOT (a0, b0) ; CNOT(al,bl); pint e = (d == a); // which were val?
CNOT (a2, b2) ; CNOT(a3,b3); pint £ = e * b; // zero non-answers

SETMEAS (); // pick random channel
printf ("a=%d b=%d\n",

MEAS (a0) + (MEAS (al) <<1) +

(MEAS (a2) <<2) + (MEAS (a3) <<3),

MEAS (b0) + (MEAS (bl) <<1) +

(MEAS (b2) <<2) + (MEAS (b3) <<3)) ; }
}

int spot = f£.First(); // factors
int one = c.Meas(spot);

int two = b.Meas (spot);

printf("%d, %d are factors of %d\n",
one, two, wval);

Quantum Supremacy or Advantage

Solving a useful problem faster than any
classical computer could

« 2019 Google’s 53-qubit Sycamore
« 2020 China’s 113-qubit Jiuzhang
« 2021 IBM’s 127-qubit Eagle

« 2024 Google’'s 105-qubit Willow ...

s Random Circuit Sampling useful?

So, What Is Quantum Good For?

* Problems where:
- You need to try all possible values
- You don't need all answers, just one or some
- You don’t mind occasionally wrong answers
- Combinatorial logic operating on few qubits

« Quantum computers are special-purpose
attached accelerators, sort-of like GPUs

Conclusions

e Quantum computing is a way past Moore’s Law,
for very specific types of computations

« Quantum computers still have a long way to go
- Quantum hardware might never get there
- Thinking about quantum algorithms often yields
faster algorithms for conventional computers

* RSA cryptography uses 2048-bit keys, Shor’s
Algorithm would need >1M qubits to break it

