
Introduction

EE599-201/EE699-201, Spring 2021

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

What Is A Compiler?

• CoBOL notion of collecting code fragments
• ForTran assignment statements
• Program Understanding AI: understand the

meaning and translate into another language
• Translates a program into…

– Another program?
– Hardware?
– Both?

• Are interpreters compilers?

Optimizing Compilers

• What does optimizing mean?
– To make optimal?
– To probably improve in some aspect
– To automatically parallelize, if that helps

• A compiler applies correctness-preserving
transformations to improve performance

This Course

• You will learn how to write a simple compiler

• You will learn how to write an assembler

• You will write (modify) compilers to perform
– Analysis & optimization
– Parallel code scheduling
– Logic circuit design & optimization

• You will learn about HW/SW codesign

Textbook

• The text is… there really isn’t one.

• To get started, we’ll use my old course notes:
http://aggregate.org/EE380/notes.pdf

but that’s just the basics…

• Lots of additional materials at the course URL
and presented in class

Grading & Such

• About 40%: 2-3 exams

• About 60%: 4 projects
– Basic-block optimizer
– Basic-block parallelizer
– Control-flow optimizer/parallelizer
– Hardware compilation

• I try not to curve much, but do adjust %

SCARY (TEAM?) PROJECTS!

• You need to be comfortable with C or C++

• All these are modifying code, not from scratch:
– Basic-block optimizer
– Basic-block parallelizer
– Control-flow optimizer/parallelizer
– Hardware compilation

• Everything can be done in 30 pages of code

Why This Is So Cool

• Consider this:
A = B * C; D = C * B; B = B * C; E = B * C;

• That’s really the same as:
A = B * C; D = A; B’ = A; E = A * C;

• And if B = 2; C = B + B; came before it:
A = 8; D = 8; B’ = 8; E = 32;

Why This Is So Cool

• Consider this:
int f() {
 int r = 0;
 for (int i=0; i<1000000; ++i) ++r;
 return(r);

 }

• With a little loop optimization this becomes:
int f() { return(1000000); }

Why This Is So Cool

• Consider this:
int:8 a, b, c;
a = (c * c) ^ 70;
a = ((a >> 1) & 1);
a = b + (c * b) + a;
a = a + ~(b * (c + 1));

• That causes about 206,669 gate operations

• Optimizing at the bit (gate) level, it’s just:
a = 0;

Course Content

• Introduction

• Simple compilation and assembly
– Target model issues, superoptimizers
– Assembler with forward reference resolution
– Simple compiler
– Peephole optimizations, constant folding,

Sethi-Ullman numbering

Course Content

• Analysis and transformation
– Value numbering, linear nested regions,

static single assignment (SSA)
– Common subexpression elimination (CSE)

with value forwarding
– Parallelization transformations, pipelining
– Loop analysis and transformations
– Interprocedural analysis and recursion

Course Content

• Silicon compilation & high-level logic synthesis
– Transformation from word to bit level
– Bit-level optimization & transformation
– Normal form transformations
– State machines

• Hardware acceleration and hardware/software
codesign

Me (and why I'm biased)
• Hank Dietz, ECE Professor and

James F. Hardymon Chair in Networking

• Built world’s 1st Linux PC cluster supercomputer

• I have a lot of cool toys…

My bias about compilers

• PhD: The Refined-Language Approach To
Compiling For Parallel Supercomputers
http://aggregate.org/REFINED/thesis.pdf

• Purdue Compiler Construction Tool Set
http://www.polhode.com/pccts.html
http://antlr.org/

• C to low level, not FORTRAN to FORTRAN

http://aggregate.org/REFINED/thesis.pdf
http://www.polhode.com/pccts.html

