
REGISTER A L L O C A T I O N & SPILLING VIA G R A P H C O L O R I N G

G. J. Chaitin
IBM Research

P.O.Box 218, Yorktown Heights, NY 10598

ABSTRACT

In a previous paper we reported the successful use
of graph coloring techniques for doing global register
allocation in an experimental P L / I optimizing compi-
ler. When the compiler cannot color the register con-
fliet graph with a number of colors equal to the num-
ber of available machine registers, it must add code to
spill and reload registers to and from storage. Previ-
ously the compiler produced spill code whose quality
sometimes left much to be desired, and the ad hoe
techniques used took considerable amounts of compile
time. We have now discovered how to extend the
graph coloring approach so that it naturally solves the
spilling problem. Spill decisions are now made on the
basis of the register conflict graph and cost estimates
of the value of keeping the result of a computat ion in
a register rather than in storage. This new approach
produces bet ter object code and takes much less com-
pile time.

1. INTRODUCTION.

This paper is a progress report on part of the work
on an experimental 32-bit minicomputer that has been
pursued at the IBM Watson Research Center for the
past several years (1). One of the main goals of this
project is to attain very high performance by using a
very simple and regular CPU on a single chip. In the
current design the CPU contains th i r ty- two 32-bi t
general-purpose registers. The instruction set consists
mostly of 3-address register to register operat ions,
each of which executes in a single machine cycle.
References to storage are through separate load and

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 A C M 0 - 8 9 7 9 1 - 0 7 4 - 5 / 8 2 / 0 0 6 / 0 0 9 8 $00 .75

store instructions. In order to achieve the high per-
formance goals of this project, it is essential to take
advantag e of the high-speed registers and keep data
there rather than in storage as much as possible, in
order to avoid having the very fast CPU waiting for
the storage subsystem.

Another of our principal project goals is that this
machine be programmed only in a high-level language,
which is a P L / I variant. This version of P L / I is es-
sentially a subset of P L / I which has been chosen be-
cause programs which remain in the subset are good
subjects for an optimizing compiler. It was our hope,
which we believe that we have largely achieved, that
by systematically utilizing the best available optimizing
compiler technology, object code produced by the
compiler would be competi t ive with hand-coded as-
sembly language, and there would no longer be much
incentive to do programming at the machine language
level. The simplicity and regularity of the instruction
set of our experimental minicomputer not only enables
its CPU to be simpler, smaller, and faster, but it also
simplifies the design of the compiler for our P L / I sub-
set.

Allen (2) discusses in general terms our approach
to compiler design, contrasting it with other compiler
efforts. More specific information on the optimization
techniques we use is contained in the paper by Cooke
and Markstein (3). Our previous paper on register
allocation (4) details our approach at that time. Here
we shall paint the picture in broader brushstrokes,
emphasizing the improvements which have been made
since (4).

2. OVERVIEW OF REGISTER A L L O C A T I O N .

The register al location phase of the compiler
stands between the optimization phase and the final
code assembly and emission phase. When the interme-
diate or internal language (IL) enters register alloca-
tion, it is writ ten assuming a hypothetical target ma-
chine having an unlimited number of high-speed

98

general-purpose CPU registers. It is the responsibility
of the optimization phase to eliminate references to
storage by keeping data in these registers ,as much as
possible. It is the responsibility of the register alloca-
tion phase to map the unlimited number of symbolic
registers assumed during optimization into the 32 reg-
isters which are actually present in the CPU. In order
to do this, it may be necessary to add code to the pro-
gram to spill computations from registers to storage
and later reload them. We shall refer to this as spill
code.

Register allocation consists of the following main
parts: usedef chaining plus getting the right number of
names, building the interference graph, coalescing
nodes, attempting to find a 32-coloring of the graph,
and if one cannot be found, modifying the program
and its graph until a 32-coloring is obtained. We now
briefly describe each of these steps.

The first step in processing the program is to use
well-known optimizing compiler techniques to do a
global data-flow analysis. We must know which sym-
bolic registers are live at each point in the IL program.
This is done by indicating at the beginning of each
basic block which computations are live going into it,
and by marking each operand of each instruction in
the IL to indicate if it goes dead.

Next the register interference graph is built. It
contains one node for each symbolic register in the IL.
Two nodes are adjacent, that is to say, two symbolic
registers conflict or interfere, if they are ever live si-
multaneously, more precisely, if one of them is live at
a definition point of the other. Thus a 32-coloring of
the interference graph corresponds to a permissible
register allocation, and if the chromatic number of the
graph is greater than 32, spill code is necessary.

After the interference graph is built, unnecessary
register copy operations are eliminated by coalescing
or combining the nodes which are the source and tar-
gets of copy operations. Of course, this can only be
done if these nodes do not interfere with each other.
Once two nodes have been coalesced, they must get
the same color and be allocated to the same register,
and the copy operation becomes unnecessary. This
copy-eliminating optimization is known as subsump-

tion or variable propagation in the optimizing compiler
literature.

Next we use the following seemingly trivial obser-
vation in order to construct a 32-coloring. Assume we
wish to find a 32-coloring of a graph G having a node
N of degree less than 32. Then G is 32-eolorable if
and only if the reduced graph G' from which N and all
its edges have been omitted is 32-colorable. So our
algorithm reduces the interference graph by throwing

away all nodes of degree less than 32. This often
cascades until the entire graph is thrown away, that is,
until the problem of 32-coloring the original graph is
reduced to that of 32-coloring the empty graph.
Nodes are then added back on in the inverse order
that they were removed, and as each node is restored,
a color is picked for it. Experiments have shown that
this algorithm produces excellent results. It is easy to
see that it can be implemented in such a way that its
running time is linear in the size of the graph; a full
NP-complete algorithm for obtaining 32-colorings is of
course out of the question. Note that the coloring
algorithm fails only if at some point the reduced graph
G' only has nodes of degree 32 or greater.

What can we do if the algorithm is blocked in this
way? If the above procedure fails to produce a 32-
coloring, we must add spill code and modify the inter-
ference graph until a 32-coloring is obtained. In fact
this is essentially done by the same algorithm used to
obtain 32-colorings. It is not far from the truth to say
that the algorithm for obtaining 32-colorings will ei-
ther do so or will modify the program and its graph
until it can. If the algorithm is blocked because all
nodes are of high degree, it will pick a node to delete
from the graph in order to unbloek things. Deleting
this node will hopefully produce a cascade of nodes of
degree less than 32 and enable the coloring algorithm
to finish or at least to advance a considerable distance
towards the empty graph. Deleting the node from the
graph corresponds to making the decision that the
computation which it represents will be spilled, that is,
kept in storage rather than in a register. This means
that each spill decision implies adding code to the IL
to store a spilled computation at each of its definition
points and to reload it at each of its use points.

3. THE INTERFERENCE GRAPH.

The register interference graph is a large and mas-
sive data structure, and it is important to represent it'
in a manner that uses as little storage as possible con-
sistent with the ability to process it at high speed. We
use a dual representation: a bit matrix and adjacency
vectors.

The bit matrix for an N-node interference graph
consists of a symmetric matrix of N bits by N bits.
The bit at row I and column J is a 1 if and only if
nodes I and J are adjacent. This bit matrix is excellent
for random access to the interference graph, but it is
quite sparse, and it is too time consuming to use it for
sequential access to the graph. Thus it is supplement-
ed by keeping for each node in the graph a vector
giving the set of nodes which are adjacent to it. The
length of this vector is equal to the degree of the node.

99

The algorithm for building the interference graph
is therefore a two pass algorithm. In the first pass
over the IL the bit matrix is used to calculate the de-
gree of each node. Then the N adjacency vectors are
storage allocated, and a second pass is made over the
program IL in order to fill in the adjacency vectors.
We believe that this two-pass approach is much better
than the one-pass segmented scheme described in (4);
non-segmented adjacency vectors can be processed
more simply and quickly.

4. SUBSUMPTION.

Our approach to coalescing nodes of the graph in
order to eliminate unnecessary register copy operations
is also different from that in (4). As we coalesce
nodes, we keep the bit matrix current, and chain to-
gether the interference vectors of nodes which have~
been coalesced. We do not attempt to eliminate en-
tries in the adjacency vectors which have become du-
plicates due to node coalesces. The resulting interfer-
ence graph is therefore not suitable for use by the
coloring algorithm, which deduces the degree of a
node from the length of its adjacency vector and is
disturbed by duplicate entries.

In order to obtain a new interference graph re-
flecting the coalesces, the program IL is rewritten in
terms of coalesced symbolic registers, and the two-
pass interference graph building algorithm is re-run on
the new and somewhat shorter IL. It may then be
possible to eliminate register copy operations that
could not previously be eliminated by performing fur-
ther node coalesces (see (4)). So we continue build-
ing the graph and coalescing, until no more desirable
coalesces are found to be possible and the graph is left
unspoilt by coalescing. In practice two or three itera-
tions will do.

5. SPILLING.

In the overview we briefly described how spill
decisions are made from the interference graph. That
description omitted two very important points: which
node is chosen to spill when the coloring algorithm is
blocked, and the fact that the interference graph must
be rebuilt after spill code is inserted. Let us deal with
the second point first.

In order to make spill decisions from the graph, it
is important to keep the graph and program in step as
spill decisions are made. However this can only be
done in an approximate manner. Spilling a computa-
tion is not the same as eliminating its node from the
graph, for it is still necessary to reload it at each use
and to store it away at each definition point. So that

what actually usually ought to happen is that one node

corresponding to a globally live computation would
have to be replaced by several new nodes correspond-
ing to computations which are only live momentarily.
However it is too expensive to proceed in this more
exact manner.

Thus after all spill decisions are made, it is neces-
sary to insert spill code in the program IL, rebuild the
interference graph, and then reattempt to obtain a
32-coloring. This will usually succeed, but it is some-
times necessary to loop through this process yet again,
adding a little more spill code, until a 32-coloring is
finally obtained. In practice we have not found the
fact that the process of inserting spill code and re-
building the interference graph must be iterated until a
coloring is obtained to be a problem. Convergence is
usually quite rapid, and the compile time is dominated
by that required to build the graph the first time - all
successive graphs are substantially smaller.

The other point we must address is how to choose
a node to spill when the coloring algorithm is blocked.
Obviously one wishes to insert as little spill code as
possible. More precisely, we attempt to increase the
execution time of the object program as little as possi-
ble. In order to estimate execution times, we assume
that all instructions execute in one machine cycle and
that each instruction in a loop is executed ten more
times than it would be if it were outside the loop.

While making spill decisions, we supplement the
interference graph with a table which gives for each
node in the graph an estimate of what it would cost to
spill it. Then when the coloring algorithm is blocked,
it decides to spill that node, among those remaining,
for which the cost of spilling it divided by its current
degree is as small as possible.

These cost estimates are made as follows. The
cost of spilling a node is defined to be the increase in
execution time if it is spilled, which is approximately
equal to the number of definition points plus the num-
ber of uses of that computation, where each definition
and use is weighted by its estimated execution fre-
quency. The cost estimates also take into account the
fact that some computations can be redone instead of
spilling and reloading them, and that if the source or
target of a register copy operation is spilled then the
copy operation is no longer necessary. In fact spilling
a computation that can be recomputed and which is
used as the source of a register copy operation can
have negative cost!

Finally a somewhat subtle point must be men-
tioned, which gives some local intelligence to our glob-
al algorithm. Suppose that there are several uses of a
spilled computation within a single basic block. Pro-

i00

ceeding naively as outlined above, one would reload it
at each use. However if no computat ions go dead
between the first use and the last use, then one might
as well only insert a load before the first use, and keep
the computat ion in that register until the last use.
Similarly, if a computation is local to a basic block,
and if nothing goes dead between its definition and its
last use, then spilling the computation cannot help to
make the program colorable. We therefore set the
cost of spilling this node to infinity. This also keeps
our algorithm from spilling computat ions that have
already been spilled.

6. CONCLUSIONS.

By now thousands of programs have been run
through the compiler, and it is regularly boots t rapped
through itself. Based on this experience with it we can
conclude that these register allocation techniques seem
to take better advantage of the speed potential of us-
ing registers in preference to storage than previous
approaches (see (3)). The cost in terms of compile
time also seems reasonable: register allocation includ-
ing spilling now takes an amount of compile time com-
parable with the more tradit ional optimization algor-
ithms described in (3). However it must be admitted
that a fair amount of virtual storage is needed to hold
the program IL and interference graph in core during
register allocation.

RE FE RE N CE S

1. "The 801 minicomputer," G. Radin, Proceed-
ings of the ACM Symposium on Architectural Support
for Programming Languages and Operat ing Systems,
March 1-3, 1982, Palo Alto, California.

2. "The history of language processor technology
in IBM," F.E. Allen, IBM Journal of Research and
Development 25 (1981), pp. 535-548.

3. "Measurement of code improvement algor-
ithms," J. Cocke, P.W. Markstein, Information Proc-
essing 80, S.H. Lavington (ed.), North-Holland, Am-
sterdam, 1980, pp. 221-228.

4. "Register allocation via coloring," G.J.. Chaitin,
M.A. Auslander, A.K. Chandra, J. Coeke, M.E. Hop-
kins, P.W. Markstein, Computer Languages 6 (1981),
pp. 47-57.

5. "Optimizat ion of range checking," V. Mark-
stein, J. Cooke, P. Markstein, this Proceedings.

6. "Higher Level Programming: Introduction to
the Use of the Set-Theoretic Programming Language
SETL," R.B.K. Dewar, E. Schonberg, J.T. Schwartz,
Courant Institute, New York University, 1981.

APPENDIX

The following program written in SETL (see (6))
outlines in executable form the main ideas and algor-
ithms presented in this paper.

program register allocation;

var il; $ il is an ordered' sequence of instructions

$ Each instruction is a triple (opcode,def,use),
$ where opcode is a character string,
$ & ' bb w, 'copy% 'spill t, and ' r e load '
$ have special meanings.
$ Def is a tuple of outputs, each a pair (reg,dead), where
$ reg is a symbolic register and dead is a t rue / fa lse value
$ indicating whether or not reg goes dead.
$ Use is a tuple of inputs, each a pair (reg,dead), where
$ reg is a symbolic register and dead is a t rue / fa lse value
$ indicating whether or not reg goes dead.

$ Basic block header pseudo-ops:
$ 'bb' has def for each symbolic register live at entry to the basic block.
$ ' b b t has as use the est imated execution frequency of the basic block
$ (floating point number).

101

var graph;

var colors;
var cost;
var spil led;

$ regis ter in ter ference graph = set of edges,
$ each edge being specif ied by the set of its endpoin t s

$ set of avai lable colors (machine regis ters)
$ gives es t imated cost of spill ing each symbol ic regis ter
$ set of spi l led symbol ic registers

read(il);
read(colors);
if co lo r_ i lO = f~ then

e s t ima te_ spill _ costs;
dec ide_sp i l l s ;
i n se r t_ sp i l l _code ;
co lor_ i l ;

end if;
pr in t (il);

proc co lor_ i l ; $ bui ld graph, coalesce, & color
bu i ld_g raph ;
coa le sce_ nodes;
color ing := c o l o r _ g r a p h (graph, regis ters in i l O) ;
if color ing = f~ then re turn ~ ; end if;
r ewr i t e_ i l (color ing);
re turn(color ing);

end proc co lor_ i l ;

p roc bu i ld_g raph ; $ bui ld the regis ter in te r fe rence graph
g r a p h : = {] ;
(for [opeode , def, use] ~ il)

if opcode = tbb t then
l iveness := {] ;
(f o r [r e g , d e a d] e def I not dead)

l iveness(reg) := l iveness(reg) ? 0 + 1 ;
end for;

else
(for [reg, dead] E use I dead)

l i v e n e s s (r e g) - : = 1 ;
if l iveness(reg) = 0 then l iveness(reg) := fl ; end if;

end for;
(for [reg, dead] E def)

graph + : = { { reg, x]
: x E domain l iveness I x # reg] ;

if not dead then
l iveness(reg) := l iveness(reg) ? 0 + 1 ;

end if;
end for;

end if;
end for;

end proc bu i ld_graph ;

102

proc c o a l e s c e n o d e s ; $ coalesce away copy opera t ions
(while 3 [opcode , def, use] E il
I opeode = 1copy1

and (source := u s e (I) (1)) ¢ (ta rge t :-- d e f (1) (1))
and { source, ta rge t } I/ graph)

f := { [source, target] } ;
g raph := { { f(x) ? x : x ~ edge } : edge c graph } ;
r ewr i t e_ i l (f);

end while;
end proc c o a l e s c e n o d e s ;

proc c o l o r _ g r a p h (g , n) ; $ color the graph with edges g & nodes n
if n = { } then re turn { }; end if;
if not 3 node E n] # ne ighbors (node ,g) < # colors

then re turn fl ; end if;
color ing := c o l o r _ g r a p h ({ edge E g I node ~ edge },

n - [n o d e }) ;
if color ing = f / t h e n re turn f~ ; end if;
co lo r ing(node) :=
a rb(colors - { co lor ing(x) : x E ne ighbors (node ,g)]);
re turn color ing ;

end proc co lo r_ g rap h ;

proc e s t ima te_sp i l l _cos t s ; $ es t imate cost of spill ing each regis ter
cost := {] ;
(for [opcode , def, use] E il)

if opcode = Wbbt then
f requency := u s e (I) (1) ;

else
(for [reg, -] E def + use)

cos t (reg) := cos t (reg) .'? 0 + f requency ;
end for;

end if;
end for;

end proc e s t ima te_sp i l l _cos t s ;

proc d e c i d e s p i l l s ; $ make spill decis ions
g := graph;
n := r eg i s t e r s_ in _ i l () ;
spi l led := { };
(while n ~ {])

if not ~! node E n I # ne ighbors (node ,g) < # colors then
node : =
arb { x ~ n I cos t (x) = m i n / { cos t (y) : y ~ n } } ;
spi l led + : = { node } ;

end if;
g : = { e d g e e g I node I/ edge] ;
n - : = [n o d e } ;

end while;
end proc d e c i d e s p i l l s ;

103

proc i n se r t_ sp i l l _code ; $ inser t spill & re load ins t ruc t ions in il
n e w i l : = [] ;
(for [opcode , def , use] E il)

if opcode = ' b b ' then
newil + : = [[t b b ' ,
[[reg,dead] E def I reg I/ spi l led],use]];

else
before := af ter := newdef : - newuse := [] ;
(for [reg, dead] E use)

if reg E spi l led then
newuse + : = [[(n e w r e g : = n e w a t) , t rue]] ;
before +: = [[' r e load ' , [[newreg , fa l se]] , []]] ;

else
newuse + : = [[reg, dead]] ;

end if;
end for;
(for [reg, dead] E def)

if reg E spil led then
newdef + : = [[(n e w r e g : = n e w a t) , false]] ;
a f ter + := [[' sp i l l ' , [] , [[newreg , t rue]]]] ;

else
newdef + : = [[reg, dead]] ;

end if;
end for;
newil + : = be fore + [[opcode ,newdef , newuse]] + af te r ;

end if;
end for;
il : = newil ;

end proc i n s e r t _ s p i l l _ c o d e ;

p roc r ewr i t e_ i l (f) ; $ app ly func t ion f to each regis ter in il
iI := [[opcode ,

[[f (reg) ? reg, dead] : [reg, dead] E def],
[[f (reg) ? reg, dead] : [reg, dead] E use]

]
: [opcode , def, use] E il] ;

end proc rewr i t e_ i l ;

p roc r e g i s t e r s : i n _ i l ; $ re turns set of symbol ic regis ters in il
re turn
{ reg : [reg , -] E [] + / [d e f + u s e : [- ,de f ,use] E il]

I (type reg) # ' R E A L ' } ;
end proc r eg i s t e r s_ in_ i l ;

p roc ne ighbors (x ,g) ; $ x is node, g is set of edges
r e t u r n { y E { } + / g I {x,y} E g } ;

end proc neighbors ;

end p rogram reg i s t e r_a l loca t ion ;

104

APPENDIX. The IL.

The following PL/I program illustrates the IL used during register allocation. Its chief
advantage is that it allows algorithms to quickly loop through all the registers in an
instruction, and that it can be quickly rewritten to reflect register renamings. Also note
that multiple results are permitted, as well as an unlimited number of input operands.

register rename: proc(eq);

dcl

eq(*)
X

i
il
proc begin

fixed bin, /* map from old to new register names */
offset(il), /* x points to current instruction */
fixed bin, /* i points to current operand */
area(*) ctl ext , /* intermediate language for proe */

offset(il) ext, /* offset in il of beginning of proc */

1 instruction based(x),
2 next instruction offset(il),
2 last instruction offset(il),
2 source statement fixed bin,
2 opcode fixed bin,
2 defs fixed bin,
2 uses fixed bin,

/* current instruction in il for proc */
/* forward chain */

/* backward chain */
/* for listings & tracebaeks */

/* & pseudo-ops like label definition */
/* index of last output operand */
/* index of last input operand */

2 kills fixed bin, /* index of last operand destroyed */
2 operand(i refer(kills)), /* def's, then use's, then kill's */

3 register fixed bin(31), /* or integer value or dictionary ref */
3 operand type fixed bin, /* see list of types below */
3 dead bit, /* operand's value is no longer alive */

/* operand types:*/
o null fixed bin ext,
o symreg fixed bin ext,
o dictref fixed bin ext,
ohinteger fixed bin ext;

/* no operand in this position */
/* symbolic register (computation) */

/* dictionary reference (storage) */
/* immediate value (displacement ete) */

do x = proc begin repeat next instruction /* look at each instruction */
until(nextminstruction = procmbegin);
do i = 1 to kills; /* look at each operand */

if operandmtype(i) = o symreg then /* if it is a register, */
register(i) = eq(register(i)); /* then rename it */

end;
end;

end register rename;

105

