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Abstract—Earlier work demonstrated that general MIMD-
parallel programs could be transformed to be efficiently inter-
preted within a CUDA GPU. Unfortunately, the quirky split-stack
instruction set used to make the GPU interpreter efficient meant
that only a specially-constructed C-subset compiler could be used
with the system.

In this paper, a new system is described that can directly use
a complete, production-quality, compiler toolchain such as GCC.
The toolchain is used to compile a MIMD application program
into a standard assembly language — currently, MIPSEL. This
assembly code is then processed by a series of transformations
that convert it into a new instruction set that manages GPU local
memory as registers. From this code, an optimizing assembler
generates a customized interpreter in either NVIDIA CUDA or
portable OpenCL.

I. INTRODUCTION

Traditional SIMD architectures always have been very easy
to scale, but clock rates generally plummet as fanout be-
comes large. GPUs (Graphics Processing Units) solve the
classic SIMD clock rate problem by implementing a group
of loosely-coupled relatively-narrow SIMD engines instead of
a huge synchronous one. For example, ClearSpeed’s more
conventional CSX700 SIMD chip [1] reached a maximum
clock rate of 250MHz, whereas contemporary NVIDIA [2] and
AMD [3] GPUs ran at twice that rate. The potential efficiency
of GPUs is further increased by avoiding hardware-intensive
features that do not increase peak arithmetic performance. For
example, features like interrupt handling, various forms of
memory protection, and large caches would all reduce peak
performance per unit circuit complexity.

The problem is that the resulting more scalable, but more
complex and restrictive, execution model is difficult to pro-
gram. The goal of the research reported here is making GPUs
able to efficiently run parallel programs that were developed
targeting MIMD systems using either shared memory or
message-passing communication via MPI [4].

The concept of MIMD execution on SIMD hardware was at
best a curiosity until the early 1990s. At that time, large-scale
SIMD machines were widely available and, especially using
architectural features of the MasPar MP1 [5], a number of
researchers began to achieve reasonable efficiency. For exam-
ple, Wilsey, et al., [6] implemented a MasPar MP1 interpreter
for a toy instruction set called MINTABS. Our first MIMD
interpreter running on the MasPar MP1 [7] achieved approx-
imately 1/4 the theoretical peak native distributed-memory
SIMD speed while supporting a full-featured shared-memory
MIMD programming model. Earlier versions of our MOG

(MIMD On GPU) environment have demonstrated similar
efficiency on NVIDIA CUDA GPUs using carefully tuned
interpreters [8].

Given that the MOG concept has been proven viable, the
work presented in this paper is more focused on making MOG
practical. Beyond reimplementing and making minor improve-
ments to the best methods discovered in earlier research, the
primary contributions are:

o Rather than processing a stack assembly language, the
new MOG system uses an accumulator/register instruc-
tion set. Both assembly languages needed somewhat un-
usual features in order to obtain good efficiency. However,
management of the very limited low-latency memory
resources is mapped into an apparently conventional reg-
ister allocation problem in the new instruction set, rather
than the unusual problem of explicit movement of data
between local and global portions of a split stack. This
makes the new instruction set much more compatible with
existing compiler backends without imposing a significant
runtime performance penalty.

e Whereas the old versions required compilers to be re-
targeted, the new version alternatively allows existing
compiler toolchains to be used unchanged. The system
described here converts MIPSEL assembly code into
the new MOG assembly language, thus allowing any
existing toolchain generating MIPSEL code to be used.
The method has been tested with both LLVM [9] and
GCC.

o Earlier versions of the MOG system exclusively targeted
NVIDIA CUDA GPUs. The MOG system described in
this paper targets both NVIDIA CUDA and portable
OpenCL [10]. It worthwhile noting that although OpenCL
is intended to be vendor neutral and is supported by
both NVIDIA and AMD/ATI GPUs, writing code to
be portable between GPUs from different vendors and
efficient on all requires very careful use of OpenCL.

The new instruction set architecture most directly exposes
the key issues, and is presented in Section II. Translation of
MIPSEL assembly code is described in Section III. Section IV
briefly discusses the MOG assembler and interpreter structure
— more details about how and why MOG interpreters work
can be found in our LCPC 2009 paper [8]. Conclusions are
given in Section V.

II. INSTRUCTION SET ARCHITECTURE

Earlier MOG systems were very closely tied to the proper-
ties of the NVIDIA CUDA GPUs they targeted. In contrast,



the new MOG system explicitly is designed to be able to be
efficiently implemented by both NVIDIA CUDA GPUs and
OpenCL on any of a wide variety of hardware including GPUs
from both NVIDIA and AMD/ATI. Thus, it is useful to view
the latest MOG as a true instruction set architecture offering
many implementation choices. There is an abstract model of
the hardware environment for each PE (processing element)
and an instruction set specification including both assembly
language and bit-level encoding. This is the compiler target
for portable MOG.

A. PE Hardware Environment

Each PE as we count them is actually a virtual PE inside
a GPU, generally not a dedicated block of physical hardware.
The number of virtual PEs is not trivially derived from the
number of physical PEs, but is computed as a function of the
number of SIMD engines and various constraints that together
determine the optimal degree of multithreading. The smallest
GPUs contain at least 256 MOG PEs and the largest GPUs
could contain more than 64K MOG PEs. A cluster of nodes
each containing a GPU would multiply the PE count by the
number of nodes, easily reaching millions of PEs.

For most purposes, each MOG PE behaves exactly like a
conventional processor running a sequential user-level pro-
gram. It apparently executes independently of both the other
PEs and the host computer’s processor. Although the archi-
tectural model could support fully general MIMD execution,
the current compilation toolchain does require the text of the
program to be a single image shared by all PEs: a MIMD
variant more precisely known as SPMD (Single Program,
Multiple Data). Each PE may apparently asynchronously take
its own path through the program, but all PEs share the same
program.

Whereas conventional processors handle system calls by en-
tering a protected execution mode provided by the processor’s
hardware, MOG PEs have no such support. Indeed, most GPU
hardware has no mechanism by which it can initiate anything
like a system call, nor can it access I/O devices — other than
the video display it drives. Our solution is to hand-off any
such system call to be done by the host processor. A GPU
PE cannot directly interrupt the host processor, but it can drop
a message to the host in a place that both can access. The
primary way a PE can attract the host processor’s attention
is to cleanly terminate the GPU kernel, thus causing the host
to examine the message buffer and act as it directs. This is a
very slow system call process, but fully general, and system
calls are fairly slow even within conventional processors.

All of this structure becomes much clearer when viewing
Figure 1, which shows the logical structure of a MOG PE’s
hardware environment. Each of the logical function blocks is
color-coded by approximate access speed from blue (fast) to
red (slow). In addition, each is marked with the associated im-
plementation constructs in CUDA and OpenCL. The following
paragraphs briefly explain the function of each block.
Accumulator. Both CUDA and OpenCL name and use GPU
PE registers as the top level of the memory hierarchy. The
only programmer-visible register in this function unit is the
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accumulator, but a number of interpreter-internal registers also
are placed here.

REGs. What CUDA calls shared memory and OpenCL calls
local memory is ideally the patch of memory within a SIMD
engine. Although it can be accessed by any virtual PEs within
that SIMD engine, GPU hardware imposes a performance
penalty for violating hardware banking constraints. In MOG,
this memory is partitioned along bank boundaries and used to
hold the programmer-visible PE registers.

CPOOL and TEXT. The constant pool (CPOOL) and
program text (TEXT) together make-up the program code.
The reason they are two separate structures is a word-size
difference; the CPOOL constants are 32-bit words, while
instructions are just 16-bits long to maximize bandwidth uti-
lization. Note that this is a Harvard architecture, with separate
memories for code and data, so addresses in the TEXT are
given in units of instructions, not bytes. In CUDA, both can be
naturally implemented as 1D textures. Unfortunately, OpenCL
images (the equivalent to textures) only support 2D or 3D
addressing. Thus, the OpenCL version currently marks both
as being stored in constant memory.

DATA. The DATA for all PEs is kept in global memory.
The global memory is roughly 100X higher latency than the
registers, and has banking constraints similar to those for
shared/local memory. Thus, a layout respecting the banking
is used to keep all PE references within the correct bank.
The preferred data memory layout treats memory as a three-
dimension array of 32-bit datum_t values: mem[NPROC /
WARPSIZE] [MEMSIZE] [WARPSIZE] in which NPROC is
the number of logical processing elements (assumed to be
a multiple of WARPSIZE, which in turn is assumed to be
a power-of-two multiple of the number of memory banks).
One might have expected a two-dimensional layout with
mem [MEMSIZE] [NPROC] would suffice, but that would
significantly complicate address arithmetic because NPROC
is not necessarily a power of 2 and might not even be
a compile-time constant. In fact, the CUDA compilation
system does not handle the constant power-of-two stride of
WARPSIZExsizeof (datum_t) any better, but explicitly
using shift and mask operations on pointer offsets imple-
ments the desired addressing without multiply and modulus
operations. One final complication is that although the DATA
memory is banked for 4-byte word access, addresses are given
as byte addresses and both byte and half-word operations are
supported.

SYSBUF. Passing data to and from system calls is done
using a separately-allocated SYSBUF space. Interpreter start-
up and shut-down code handles copying between strided sys-
tem buffers in the DATA space and the unit-stride SYSBUF;
copying is not done by the host nor the PEs per se. Thus,
the PEs operate on data using the stride that is most efficient
for both CUDA and OpenCL and the host uses its native
unit stride. Further, on appropriate hardware, both CUDA and
OpenCL have the ability allocate memory for SYSBUF that
may be slower to access, but can be directly accessed by both
the PEs and host. Even if the host and PEs cannot share access
without using explicit copy operations, using a separate space
in global memory means that only the SYSBUF structure
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Figure 1. PE Hardware Environment and CUDA/OpenCL Implementations

needs to be copied — not various discontinuous portions of
the DATA space.

SYS Call Handler. The host processor is not a processing
element in our architectural model, but essentially a dedicated
system call handler: a very intelligent DMA controller for
interactions with various I/O devices that the PEs cannot
directly access. These devices range from host main memory
and disk drives to system functions and resources on other
nodes in a cluster.

A PE requesting a host action will experience some delay
in having its request processed. However, the significance of
that delay is very dependent on the type of request being
made. For example, waiting a millisecond to initiate a disk
I/0O request that will take 10ms to complete causes negligible
loss of performance. In contrast, waiting a millisecond to send
a message from one PE to another might be unacceptable.

There also is a tradeoff between delay in processing requests
and improved efficiency due to aggregation of requests — the
host does not need to process requests individually if requests
from many PEs can be combined.

Although all of the resources available to the host processor
can be made available to PEs through this interface, at this
writing, only a few Posix-based system calls are implemented.
Implementation of the standard MPI (Message Passing Inter-
face) library for accessing PEs in GPUs within other nodes in
a cluster has been a research interest of our group for over two
years. It also is easily possible to access native GPU libraries
or arbitrary user-supplied code via this system call interface
with minimal overhead.

B. Instruction Set Design

One might expect that the best instruction set to use for
the MOG system would be the native instruction set for the
GPU, but that generally is not the case. Different GPUs have
significantly different instruction sets and vendors generally
discourage direct use of those instruction sets. Further, the
need to have the exact same register use and control bits
would make it very difficult to obtain significant factoring of
instructions across MOG PEs.

The original MOG instruction set is based on a split-stack
model which factors very well. The active top of the stack is
kept in low-latency memory and explicit operations are used to
shift portions of the stack to or from global memory as needed.
This model executes efficiently and is easy to target with a
custom code generator, but most existing compiler back-ends
cannot easily support it.

The new MOG instruction set is designed to be much more
compatible with existing compiler toolchains. It explicitly
manages CUDA shared or OpenCL local memory as a set
of general-purpose registers. Using a strided layout to ensure
that all “registers” of each MOG PE are accessible without
bank conflicts results in essentially the same access time
as physical GPU registers, while indirect addressing allows
factoring despite PEs accessing different registers. However,
our general registers cannot be used as targets for ALU
operations — a single accumulator (kept in a real GPU register)
is used instead.

Why not use a more common two- or three-operand instruc-
tion format? For our interpreter, processing each operand field
implies significant overhead. Compared to a three-operand
format, two-operands reduce the number of field decodes
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Table 1
THREE, TWO, AND ONE-OPERAND FORMATS

Three Operand Format
(9 operands)

Two Operand Format
(8 operands)

Accumulator Format
(7 operands)

add $1,$1,%2 add
xor $1,$1,$3 xXor

mov
and $4,8$5,5%6 and

1lr $1
add $2
xor $3
sr $1
lr $5
and $6
sr $4

$1,82
$1,83

$4,85
$4,356

when a source register is the same as the destination register.
The single-accumulator model avoids processing yet another
operand field when the result of one instruction becomes an
operand to the next. These optimization opportunities occur
naturally and can be made more common by register allocation
and code scheduling.

The reduction in operand processing is clearly seen in
the functionally-equivalent instruction sequences shown in
Table I. The additional instructions for the accumulator model
always are load and store register operations, further increasing
the probability of factoring across different MIMD PEs by
reducing opcode entropy.

C. Instruction Set Overview

The new MOG instruction set is summarized in Table II.
Braces are used to indicate variants; for example, in the table
add{, £} represents add and addf. Note that the “meaning”
entries in the table are in most cases the actual kernel code
implementations in CUDA and OpenCL.

There is a 32-bit load immediate instruction, 11, that can
be used for both integer and floating-point values — the accu-
mulator and registers are essentially typeless 32-bit containers.
To keep instruction size small, the value loaded is taken from
the constant pool. The interesting twist is that the address in
the CPOOL is derived by hashing the instruction encoding
itself and address at which the 11 instruction is placed. The
instruction field that normally would have held a register
number is used to modify the hash value to avoid collisions
in the CPOOL. This instruction field is set appropriately by
the assembler, which also constructs the constant pool.

Most of the non-ALU instructions are loads and stores.
The load register and store register, 1r and sr, instructions
are really moves between the accumulator and a register —
and these are generally the most common instructions. The
memory load and store instructions come in 32-bit word (w),
16-bit half-word (h), and 8-bit byte (b) variants. Half-word
and byte values are sign-extended to 32 bits when loaded.
Memory appears to be byte addressed, but aligned access is
forced for half-word or word data by ignoring the value of
the low bit or lowest two bits, respectively. (It is worthwhile
noting that the current implementation does not require the
OpenCL byte addressing extension.) Loads are always from
memory into the accumulator, and stores always copy the value
from the accumulator into the memory location specified in a
register.

The arithmetic and logical operation instructions have the
obvious meanings and, as in MIPS, comparison for less than

is treated as an arithmetic operation. For example, add $r
means perform a 32-bit integer addition of the integer value
in register $r to the accumulator. Although most operations
are equivalent for signed and unsigned integer operands,
instructions that treat unsigned values differently have a u
suffixed name. Likewise, 32-bit floating-point instructions end
in an f suffix.

Although support for 64-bit floating-point operations easily
could be added (and might be), the choice to omit it was
deliberate. Many GPUs do not support 64-bit arithmetic and
those that do provide significantly poorer performance when
operating on 64-bit data. Part of the performance problem
comes from the fact that a 64-bit value stored in contiguous
memory locations spans two 32-bit banks. Of course, the MOG
system can instead treat a 64-bit quantity as a pair of properly
strided 32-bit values. However, earlier work on speculative
precision and native-pair arithmetic [11] has shown that
explicit treatment of two 32-bit floating-point values as a 32-bit
result and a 32-bit error term can yield accuracy similar to that
obtained operating on 64-bit floating-point values. Implement-
ing many native-pair arithmetic operations requires an order of
magnitude more 32-bit operations, but these operations do not
require additional memory references, hence they increase the
“arithmetic intensity” of a program — so the extra instructions
have less impact on performance than one would expect. More
important is the fact that native-pair arithmetic will work on
GPUs that have no hardware support for 64-bit floating-point
arithmetic. Thus, our preference is to use explicit native-pair
arithmetic instead of 64-bit instructions, and ongoing research
will determine if this is the correct answer.

There are three instructions that convert the value in the
accumulator from one type to another. These instructions are
named using the type suffixes. For example, 12 f converts the
signed integer value in the accumulator into the 32-bit floating-
point number representation with the same value.

Control flow is very simple, implemented by just three
instructions. The jf and jt instructions are jumps testing the
value in the accumulator and conditionally jumping to a 32-
bit immediate instruction address. As in the C programming
language and MIPS instruction set, the value O is false and any
non-zero value is considered to be true. The immediate value is
placed in the constant pool just as it is for the 11 instruction.
All other control flow is implemented by the j instruction,
which copies the accumulator’s value into the program counter.

The only remaining instruction is sys. In conventional
architectures, there typically is a “privileged” execution mode
and a group of special instructions intended for the operating
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Table 11
TARGET INSTRUCTION SET

[ Instruction [ Format | Meaning
[ 11 const [ op x [ a.i = CPOOL(pc, ir)
1lr Sr op r a.i = REGI(ir)
sr Sr op r REGI (ir) = a.i
1{b,h,w} op a.i = MEM{B,H,I}(a.u)
s{b,h,w} $r op r MEM{B, H,W} (REGI (ir)) = a.i
add{, f} Sr op r a.{i,f} += REG{I,F} (ir)
{and, or, xor} S$r op r a.u {&=, |=,"=} REGU(ir)
div{, f,u} Sr op r a.{i,f,u} /= REG{I,F,U} (ir)
mul{,f} S$r op r a.{i,f} *= REG{I,F} (ir)
neg{, f} op a.{i,f} = -a.{i, f}
rem{,u} S$r op r a.{i,u} %= REG{I,U} (ir)
sll $r op r a.u <<= REGU (ir)
slt{,f,u} $r op r a.{i,f,u} = (a.{i,f,u} < REG{I,F,U} (ir))
sr{a,l} $r op r a.{i,u} >>= REG{I,U} (ir)
[ {f,i,ul2{i,f,f} Sr [ op r [a.{i,f,f} = a.{f,i,u}
j{f,t} lab op x if (a.u {==,!=} 0) pc = CPOOL(pc, ir)
j op pc = a.u
[ sys func [ op func [ system(func)

system. With so many relatively poorly resourced PEs, it
does not make sense to suffer the overhead of having a copy
of the operating system on each. Further, special operating
system instructions would rarely factor, and the GPU hardware
generally does not even have a hardware mechanism by which
it could access most system I/O devices. Thus, sys simply
suspends the PE until something else — typically the host — has
performed the requested operation on its behalf. The function
code embedded in the instruction is not intended to directly
identify the desired function, but where and how the function
should be processed. For example, it can distinguish between
system calls needing immediate processing (e.g., an error exit)
and those that can be delayed somewhat to allow more efficient
aggregated processing. Similarly, it can distinguish invocations
of user-supplied code or native libraries.

IIT. TRANSLATION OF MIPSEL ASSEMBLY CODE

By design, it should be reasonably straightforward to re-
target an existing compiler toolchain to generate code for the
target instruction set architecture described above. However,
our goal is even more aggressive. By transforming a com-
monly targeted assembly language into the desired assembly
language, we can effectively retarget a multitude of compiler
toolchains in a single development effort. In particular, it was
our goal to be able to retarget code from at least one of the
major production-quality toolchains, such as LLVM or GCC.

The MIPS (Microprocessor without Interlocked Pipeline
Stages) architecture began as an experimental RISC architec-
ture at Stanford University in the early 1980s. Since then,
the basic 32-bit MIPS instruction set has been extended in
various ways. A multitude of commercial systems have em-
ployed MIPS-based processors — especially devices that are not
computers per se, but require significant embedded processing
power. The basic MIPS processor architecture also is widely
used as a teaching and research tool, partly because the
pipeline structure is very simple and partly because the MIPS
pipeline plays a central role in a very popular architecture
textbook [12].

The MIPS instruction set is unusual in a variety of ways
that make it easier to transform than most other instruction
sets. For example, many processors use a multitude of special
condition code registers whose values are changed as side-
effects of various instructions; this makes it difficult to deter-
mine which condition code settings are significant. In contrast,
the basic MIPS handling of conditional expressions follows the
C language convention, using explicit instructions to evaluate
conditionals and set an integer register to O or 1. MIPS does
have some unpleasant aspects, such as coprocessor-oriented
floating-point arithmetic instructions, and it also is necessary
to be specific about which MIPS variant is being used.

The preferred MIPS variant for our purpose is the MIPS

1 instruction set architecture with “little endian” byte order
within a word. MIPS 1 is a relatively simple 32-bit model,
which facilitates mapping operations to GPUs that are tuned
for performance of operations on 32-bit data objects. Although
most MIPS hardware can be used with either “big endian” or
“little endian” byte order, the default for MIPS is generally
“big endian” — which is the opposite of the byte order used
by GPUs hosted by either IA32 or AMD64/Intel64 processors.
Thus, the easiest MIPS variant to transform for our purpose
is “little endian” MIPS 1, which is commonly known as the
MIPSEL compiler target.
The GCC MIPSEL Target. Many compilers for C, C++,
Fortran, and various other languages can generate MIPSEL
code. While any compiler targeting MIPSEL should be usable
with the system discussed in this paper, our experiments have
centered on reprocessing the assembly code generated by one
particular compiler.

Initially, the compiler used was LLVM’s MIPSEL target.
That compiler generated standard MIPS 1 instructions, but
proved unable to generate valid code for floating-point op-
erations. The problem was traced to a major flaw in the
compiler’s model for floating-point, which essentially resulted
in the compiler confusing 32-bit and 64-bit register allocations.
Rather than spending time fixing this bug, we switched to
using the GCC MIPSEL target.



Beyond its wide availability and robustness, GCC is not
just a compiler for a single language, but the “GNU Com-
piler Collection” with front-ends supporting C, C++, Fortran,
Pascal, Java, Ada, etc. However, GCC’s MIPSEL target code
generation also proved somewhat problematic. It was relatively
late in the project that it was discovered that GCC does not
generate standard MIPSEL assembly language code, but uses
a wide range of additional features that apparently were built-
into the MIPSEL assembler used by GCC. For example, MIPS
assembly language uses the $ prefix to indicate a register
name, but GCC’s MIPSEL target also creates local variable
names with the $ prefix. In fact, GCC also hallucinates a
wide variety of instructions that are not part of MIPS 1, but
that the assembler will expand. MIPS assemblers always have
had various built-in macros for handy instruction sequences,
so it is easy to understand how adding more might have been
viewed as a harmless feature.

This proliferation of extensions to the assembly language
is not harmless to our purpose. As a result, it was decided
that taking an incremental approach to processing MIPSEL
code would make more sense than attempting to build a highly
tuned translation tool. Thus, the conversion is currently done
by an easily extendable sequence of scripts, mostly using
awk. These scripts process not just MIPSEL code, but all the
extensions that we have seen GCC use in its output.

Once we are reasonably certain that GCC’s MIPSEL output
holds no more surprises, we intend to re-implement the
processing as a proper optimizing translator. Currently, very
little optimization is done during the conversion process.
The mogecc Script. Rather than manually running GCC to
create MIPSEL code and then running a command to convert
that code, we created a script that directly runs a particular
version of the GCC MIPSEL compiler. This is not merely a
convenience, but a hedge against different GCC versions using
additional extensions to the MIPSEL assembly language that
would not be understood by our current conversion process.
The script performing C compile and conversion is called
mogcec.

The latest script begins by running the GCC cross-compiler
version 4.1.1 for the “mipsel-linux” target. Important com-
mand line options given to GCC include those listed in Table
III.

The first three are critical in forcing the expected MIPSEL
instruction set variant. Note that neither the DSP nor 3D
extensions can be enabled. The GPU PEs have very limited
low-latency memory, so the decision was made to avoid
reserving a word for a frame pointer.

After invoking GCC, mogcc uses sed and awk scripts to
simplify and normalize the MIPSEL code. Various unneces-
sary directives and comments are removed, symbolic register
names are converted into their numerical equivalents (e.g.,
Sra becomes $31), the $ prefix of compiler-generated labels
is converted into DOL_, etc. using sed. The awk scripts
perform higher-level cleaning and normalization of the code.
For example, the cleaning involves tasks such as removal of
global offset table references, conversion of MIPS multiply
and divide sequences into more conventional instructions, and
elimination of offsets in load and store instruction address

ICPP12 PAPER SUBMISSION

references. The normalization largely concerns conversion of
floating-point coprocessor operations into instructions of the
same form as the integer instructions.

The mogcc script then passes the cleaned and normalized

code through several conversion passes, as described in the
following sections.
The conflow Script. Control flow in MIPS is relatively
straightforward, consisting of just conditional branches, uncon-
ditional jump, jump register, and two forms of jump-and-link.
However, MIPS assemblers traditionally offer additional oper-
ations implemented as sequences of actual MIPS instructions,
and the code output by GCC extends that apparent instruction
set even further. The purpose of the conflow script is to
convert all the control flow into simple jump-true (jt), jump-
false (j£), and jump-register () instructions.

Converting all the conditional branches into true or false
jumps is straightforward. A large fraction of the conditional
branches are testing if the value in a register is equal to the
value in MIPS register $0, which is hardwired as zero — the
only false value in the C language. All of these branches can
be directly coded using jt or jf without wasting a register to
hold zero. Branches testing equality of two non-$0 registers
can be converted into an xor of those registers followed by
jt or jf, as appropriate.

Unconditional branches (a GCC extension) and jumps are
simply translated into jump-register instructions.

The jump-and-link instructions are functionally uncondi-

tional jumps preceded by placing the return address into the
return address register, $31. The return address is set by
inserting a label and loading its value.
The twe2acc Script. Typical of RISC architecture instruc-
tion sets, MIPS arithmetic operations generally use a three-
register form. Each such instruction encodes two source regis-
ters and a destination register. Alternatively, the second source
register can be replaced with a short 16-bit immediate value.
However, this encoding is not efficient for MOG.

The twe2acc script performs the straightforward con-
version of three-operand MIPS instructions into single-
accumulator code. It is significant to note that the single accu-
mulator is accompanied by a set of general-purpose registers.
Thus, as shown in the example of Table I, the explicit operand
for each instruction is generally a register — not a memory
address, as older single-accumulator instruction sets would
have required.

The lrsropt Script. Although conversion from MIPS
three-operand into a single-accumulator with general registers
model offers the potential to improve performance, the code
generated by twe2acc contains many unnecessary lr and
sr instructions. The lrsropt script attempts to remove
redundant 1r and sr instructions. The analysis used is very
simple. There is no need to load a value just saved, nor is
there a need to save a value just loaded from the same register.
This simple analysis removes most of the unnecessary register
accesses.

The regmap Script. The greater the fraction of low-latency
GPU memory allocated to each virtual PE, the fewer virtual
PEs can be co-resident. Typically, global memory latency
dominates execution time such that increasing the number of
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-mipsl Select the MIPS 1 architecture model

-mfp32 Force floating-point registers to be 32-bits wide
-msym32 Force all symbols to be 32 bits wide
--omit-frame-pointer | Disable use of a frame pointer register

Table III
RELEVANT MIPSEL GCC OPTIONS

co-resident virtual PEs roughly multiplies the work done per
unit time, so transformations that result in use of less low-
latency memory per virtual PE produce a proportionate parallel
speedup.

The basic MIPS instruction set has 32 user-visible integer
registers and various other special and coprocessor registers.
Blindly allocating enough low-latency memory for each PE to
have all of these registers would result in a tiny virtualization
factor, very limited parallelism, and correspondingly poor
performance. The purpose of the regmap script is to minimize
and prioritize the set of registers needed; the following MIPS
registers are treated specially:

S0 In MIPS, this is Szero — a hardwired O value. It is
not used in MOG.

In MIPS, this is $gp — a pointer to a 64K-byte
global constant pool that also can be used to store
small global variables. The mogcc script removes
all references to $28, replacing constant references
with immediate loads and allowing variables to be
allocated normally.

This is $sp — the stack pointer. To preserve the
calling conventions of MIPSEL, the stack pointer is
always allocated as MOG register $0.

In MIPS, this is $fp — the frame pointer. Since
a frame pointer is not strictly necessary, mogcc
requests GCC generate code that does not use it and
it is not preallocated. However, if used in the MIPS
code, it will be allocated.

This is $ra — the return address register. To pre-
serve the calling conventions of MIPSEL, the return
address is always kept in MOG register $1.

$28

$29

$30

$31

Other registers, including the coprocessor floating-point regis-
ters, are allocated space by regmap only if they are used.

However, it is not necessarily true that all used registers
must be allocated registers in the MOG system. Thus, regmap
not only detects which registers are used, but counts their
usage frequency. After pre-allocating registers $0 and $1,
registers are renumbered in order of decreasing frequency of
use. A future version of the system is expected to intelligently
convert higher-renumbered registers into variables in global
memory as well as performing more sophisticated analysis
and transformations to minimize MAXLIVE.
The colseg Script. As a result of converting code constructs
such as $gp references and . comm references into definitions
of data, the transformed code now freely mixes both code and
data. The purpose of the col seq script (collect into segments)
is simply to separate the data and code into two segments.
First, all data is defined in a single data segment. Then, all
code is defined in a single code segment.

The first data defined are not derived from the MIPSEL

assembly language, but are built-in portions of the MOG
environment. The first word is NPROC, the total number of
PEs in the system. The second word is ITPROC, the number of
this PE, as an unique integer value between 0 and NPROC-1
(inclusive). The next few data objects are defining the buffers
for interactions with system calls.

The deadopt Script. The deadopt script implements dead
code and dead store removal using the standard analysis. The
processing takes advantage of the fact that data segments and
labels in data space no longer are intermingled with code,
which is why colseg must be executed before it.

IV. THE MOG ASSEMBLER & INTERPRETERS

The assembler is a fairly straightforward C program imple-
menting conventional multi-pass assembly. The output is not
an object file, but rather a set of header files that define various
parameters, the program data and text segments, and even
the interpreter structure. The CUDA and OpenCL versions
are really just wrappers into which the assembler-generated
customized structure is inserted. These wrappers repeatedly
invoke the emulate () kernel, checking the SYSBUF con-
tents after each completion to determine what system calls
have been requested. Previous research determined that the
overall best MOG interpreter structure is a sequence of single-
instruction subinterpreters created specifically for the applica-
tion program [8], and the new system is a re-implementation
of this approach.

The interpreter loop sequences through subinterpreters, each
of which compares the current instruction to the opcode it can
process, and interprets the instruction if the opcode matches.
A very simple version of this approach was used for Genetic
Programming on a GPU [13], and Nilsson and Tanaka’s
original concept [14] does somewhat better by picking an
order for the subinterpreters that is intended to maximize the
expected number of instructions executed per processor per
interpreter cycle. For example, given that the subinterpreters
are in the order LR, ADD, XOR then the instruction sequence
LR, ADD, XOR would take only one cycle — but ADD, LR, XOR
would take 2 cycles and XOR, ADD, LR would take 3. In our
earlier work targeting the MasPar MP1 [15], which used a
fundamentally different approach, one of the techniques used
was “frequency biasing” in which expensive operations were
deliberately made to execute less frequently. Abu-ghazaleh et
al. [16] later integrated this idea with the single-instruction
subinterpreter sequencing concept by allowing subinterpreter
sequences that do not incorporate all instructions in every
interpreter cycle.

The assembler uses frequency estimates of both individual
instructions and instruction digrams to create an optimized
sequence of single-instruction interpreters. By default, the



assembler uses static analysis to obtain these estimates, but
they also can be obtained by tracing one or more program
executions on test data. The assembler first creates a sequence
of single instruction subinterpreters in which each instruction
type used in the program occurs at least once, and frequency
of occurrence of subinterpreters for a particular instruction
type mirrors the frequency with which that instruction is
expected to execute. The assembler then uses a modified
evolutionary search to optimize the order of the subinterpreters
so that the digram-frequency-weighted average span between
subinterpreters for instructions appearing in each digram is
minimized. For example, using 64 subinterpreters to cover the
36 instruction types, a random ordering usually has a weighted
average span greater than 15 — meaning that at runtime an
average of at least 15 subinterpreters would be attempted
before executing a subinterpreter for the next instruction. The
optimizer typically reduces that number to between 3 and 6.
Space does not permit detailed discussion of the interpreters
or their performance, but interpreter performance using CUDA
on the same GPUs is not worse than the split-stack system
achieved [8]. On the same NVIDIA hardware, the OpenCL
version appears to be slightly slower than the CUDA version.
The OpenCL version compiles on AMD/ATI hardware, but
hangs for some PE virtualizations; where the system works,
performance is again comparable. Overall, one can expect less
than an order of magnitude slower execution than tuned native
code on the same GPU. Wildly dynamic MIMD code, includ-
ing recursion, also works with apparently good efficiency.

V. CONCLUSIONS

Earlier work showed how it is possible to efficiently execute
MIMD On GPU (MOG) via interpretation, but failed to pro-
vide a practical method by which existing compilers could be
used. The new accumulator/register instruction set described
here, combined with translation from MIPSEL assembly code,
solves this problem. The new system also can generate
portable OpenCL interpreter code, not just CUDA, and has
run on both NVIDIA and AMD/ATI hardware (although not
without issues).

A full source code version of this system targeting only
CUDA has been freely available from Aggregate.Org
since November 2010. The complete version including
OpenCL support will be posted later this year. Future work
includes replacing the MIPSEL conversion scripts with an op-
timizing translator and implementation of various system calls,
especially those supporting MPI message passing between PEs
within and across GPUs.
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