
A Limit Study of Local Memory Requirements

Using Value Reuse Profiles

Andrew S. Huang and John P. Shen

{ahuang,shen} @ece.cmu.edu

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh PA, 15213

(412) 268-3601

Abstract
Modern high-pe~ormance microprocessors are devoting

more and more resources to the problem of the von Neu-

man bottleneck. In this limit study, we measure the bare

minimum amount of local memories that programs require

to run without delay. Our measurements are made by using

the Value Reuse Pro$le, which contains the dynamic value

reuse information of a program’s execution, and by assum-

ing the existence of efficient memory systems. The results

show that the group of 16 benchmarks we use require con-

siderably less memory than what a typical superscalar

microprocessor has. We also measure the amount of per-

formance improvement that is possible in the presence of

an autonomous memory system. For the DEC Alpha

21064, this figure ranges from 15% to 102Yo. The results

provide motivation for the development of more effective

memory management policies.

1.0 .Introduction

Memory has always been a bottleneck in computer sys-

tems. This is because the memory in a typical computer

system is unable to meet the latency and bandwidth

requirements of its processor. The problem is made worse

by two current trends. Advances in semiconductor technol-

ogy and instruction pipelining make it possible for proces-

sors to run at higher clock rates. This increases the relative

latency of memory access. At the same time, improve-

ments in microarchitecture designs are making it possible

for processors to issue multiple instructions per cycle.

More instructions executed per cycle translates into a

greater memory bandwidth requirement. The most popular

response to these trends is to increase the number of levels

of caches and to increase the size of the caches. For exam-

ple, the recently introduced Alpha AXP 21164 [16] runs at

300 MHz and can issue four instructions per cycle. It has

two levels of on-chip caches, which together account for

809Z0of the chip’s transistor count. It is not clear how much

of that cache is really needed to hold programs’ working

sets and how much is needed to make up for the inefficien-

cies of the traditional memory hierarchy.

This paper makes four major contributions. First, the

fundamental issues that affect memory system perfor-

mance are identified and discussed. Second, an autono-

mous memory system is proposed which provides the basis

for evaluating the performance of existing memory sys-

tems. It represents a theoretical limit that may or may not

be attainable. Programs running on a sufficiently large

autonomous memory system are said to achieve an effec-

tive memory latency of zero cycles. Third, the Value Reuse

Profile (VRP) is introduced. The VRP captures the

dynamic value reuse characteristics of a program and can

be used to compute the minimum amount of memory

needed to achieve a specified level of performance. Finally,

experimental results are presented which show that, on a

modem RISC processor such as the DEC Alpha AXP

21064, some programs can run up to twice as fast in the

presence of an autonomous memory system.

The rest of the paper is structured as follows. Section 2.0

provides the context for the paper and discusses the issues

that affect memory system performance. Section 3.0

describes the construction of the Value Reuse Profile. Sec-

tion 4,0 describes the use of the VRP in computing the

lower bound on physical dimensions of the memory sys-

tem. In Section 5.0, we describe our implementation of the

VRP software. Our initial experimental results are shown

in Section 6.0. Finally, we conclude in Section 7,0 and out-

line directions for future research in Section 8.0.

1072-4451/95 $4,00 Q 1995 IEEE 71

Proceedings of MICRO-28

2.0 Background

In this section, we introduce some of the concepts and

terminology used in the rest of the paper. We assume a

hierarchical memory system in which each level of the

hierarchy that is farther away from the CPU is also slower

in speed [17]. The local memory consists of the levels in

the memory hierarchy between the CPU and the main

memory, exclusive. Typically, it includes high speed mem-

ories such as register files and caches.

A program’s execution can be viewed as a dataflow

~aph in which each node represents a computation (per-

formed, for example, by an arithmetic instruction of a

CPU) and each arc is a value that is produced by one com-

putation and consumed by another computation. We refer

to these nodes as the useful instructions. When the pro-

gram is executed on a von Neuman machine, additional

instructions will be executed. These include instructions

that manage the movement of values in the memory sys-

tem. For example, loads and stores move values between

the register file and the main memory. The move instruc-

tions move values within the register file. We call these

memory instructions.

We define the memory overhead for a program run-

ning on a particular processor-memory system as the addi-

tional machine cycles incurred due to the execution of

memory instructions. The memory penalty consists of

additional machine cycles due to any additional delays,

such as cache miss penalty, that are caused by executing

memory instructions. The effective memory latency
(EML) for a program on a processor-memory system is the

sum of the memory overhead and the memory penalty,

divided by the total number of value consumption. Thus

the EML, measured in number of cycles per value, mea-

sures the cost per value referenced for a particulm combi-

nation of program and memory system. This will be our

metric for measuring memory system performance.

The performance of a program on a processor-memory

system and its EML are strongly influenced by the follow-

ing four fundamental factors:

Predictability. This refers to the ease with which refer-

ences to values can be predicted. In general, numerical

programs have higher levels of predictability than inte-

ger programs. This is because numerical programs gen-

erally have more predictable control flow.

Value Reuse. This refers to the reuse characteristics of

the data in a program. Some values are referenced fre-

quently in a short length of time, while others are refer-

enced occasionally over long periods of time. The reuse

characteristic determines the amount of local memory

that is needed to store live values.

●

9

Management Policy. This refers to the way in which

storage allocation is performed by the compiler and the

policy based on which data is moved up and down the

memory hierarchy. It includes the statically scheduled

movement of data using memory instructions. It also

includes the dynamic movement of data into the cache

and the replacement of a cache line on a cache miss.

Physical Dimensions. This refers to the physical size

of each level of the memory hierarchy and the band-

widths of the inter-level connections. A local memory

that is too small to hold the frequently referenced data

will stall the processor and increase the EML. A local

memory that is too big is a wasted resource that could be

better spent elsewhere.

To a great extent, the predictability of a program deter-

mines the most suitable memory management policy. Pro-

grams that have a high level of predictability can benefit

considerably from better management policies such as

compiler control of data movement through the cache

[3][5] [7][8][13][19][21] and better storage allocation

[2] [4]. They can also benefit from locality enhancing trans-

formations that result in more efficient usage of the avail-

able local memories [11] [18] [24].

In this study, we factor out the issues of predictability

and management policy to focus on the relationship

between the value reuse characteristics of programs and

the required physical dimensions of the local memory. In

particular, we are interested in using the VRP to find the

lower bound on the physical dimensions of the memory

hierarchy that is necessary in order for a program to

achieve a certain level of performance. The best possible

performance is achieving EML of zero. Predictability is

factored out by using program traces to provide perfect

knowledge of memory references. Management policy is

factored out by looking beyond variables (which are the

artifacts of the compiler’s storage allocation) at values and

by assuming the existence of management policies that can

guarantee zero memory penalty in the presence of suffi-

cient memory.

We propose two types of memory systems. In the effi-
cient memory system, the memory penalty is guaran-

teed to be zero when a program is run on a system with

sufficiently large physical dimensions. The bounds com-

puted using this memory system tells us how little local

memory is required if current memory systems could be

made more efficient. By efficient, we mean that caches are

not used to hold dead values or values that will be over-

written before they are used, etc. In the autonomous
memory system, both the memory penalty and the mem-

ory overhead are guaranteed to be zero when a program is

run on a system with sufficient memory. This memory sys-

tem represents the best possible memory system that can

72

ever be built. Programs running on a sufficiently large

autonomous memory system will have EML of zero.

Previously, Orimsrud et al. [14] proposed using the

locality surface (somewhat like the VRP plot discussed

in Section 3.3) to evaluate the reference streams generated

by synthetic models. The locality surface is a plot of proba-

bility versus stride and distance (time between references).

Thus it represents a summary of the spatial and temporal

locality of a reference stream. Our work is different

because we factor out the compiler’s storage allocation

scheme to look at the temporal locality of values. McNiven

and Davidson [20] studied memory referencing behavior

for the purpose of developing new memory management

policies and memory structures. They used a trace process-

ing technique called flattening to remove the effects of

compiler storage allocation. By doing so, they were able to

obtain summary statistics on values. Our work use a tech-

nique similar to flattening. However, we collect detailed

information on values over the course of the program’s

execution time. This gives us a profile that shows varia-

tions in referencing behavior over time.

3.0 Value Reuse Profile

The VRP is a complete specification of the cycle times at

which values are defined and used. As soon as a value is

defined, it needs a storage location. Prior to its next use, the

value must be delivered ii-em its storage location to the

CPU. By specifying the times and durations during which

values must be stored, the VRP specifies the memory

requirements of the program that generated it. Before

describing the construction of the VRP, we briefly review

the basic concepts regarding values.

3.1 Values

D

‘1TimeIILive

Range UI Reuse

ii

Distances

u~

I Figure 3-1 A value’s definition and its two uses.

A value is defined once and used one or more times, after

which, it is dead. The distance between the definition and

the last use is known as the live range of the value. The
distances between consecutive references to the value are

the reuse distances. The next use distance of a live

value at a point in time is the distance (in number of

cycles) to its next reference. Figure 3-1 shows a value with

two uses.

3.2 Construction

Information about value reuse can be gleaned from a

trace. However, the trace by itself contains only the relative

order in which values are defined and used, To obtain the

VRP, we feed the trace into a timing simulator, which

timestamps each value definition and use (in number of

clock cycles since the program started executing.) Figure

3-2 shows the setup.

Trace

o

-I&?i&H:=zersMicroarchitectore
Parameters

o

n

Behavior Qv”9p,

Model

4 i
Lower Bounds VRPPlots

I Figure 3=2 Construction and uses of VRP.

The timing simulator takes two major groups of paramet-

ers. Microarchitecture parameters specify the machine

characteristics that should be used. This can include

instruction latencies, issue policies (such as in-order or out-

of-order issue), and number of functional units. Memory

parameters specifies memory latencies, cache sizes, and

memory models. The two supported memory models that

are relevant to this paper are the efficient memory system

and the autonomous memory system.

Each combination of parameters can result in a different

VRP even when the same trace is used. Together, the

parameters allow us to generate VRPs for a universe of

processor-memory systems that span from the conven-

tional to the very idealistic.

3.3 Visualization

We can plot the Value Reuse Profile (VRP) as a three-

dimensional surface of n = fit,x) where~(t,x) is the number

of values live at time twith a next use distance of x cycles

(See Figure 3-4.) Such a plot not only shows the number of

values live at each point in time, it also reveals how many

of the live values will soon be referenced.

Figure 3-3 illustrates the construction of a VRP plot by

showing how one value contributes to the plot. The value is

73

defined at t = 1 and is first used at t = 6. Therefore at t = 1,

it is live and has a next use distance of 5 cycles (t= 1, x =

5). At t = 2, it is still live, and has a next use distance of 4

cycles. At t = 6, the value is used in a computation (t = 6, x

= O). Its next use occurs at t= 9, which is 3 cycles away (t=

6,X= 3.)

Figure 3-3 The contribution of a value to the
Value Reuse Profile. I
When the contributions from all values in the VRP are

added up, the result is a VRP surface that resembles Figure

3-4. Thk is a VRP plot for a version of tomcatv that has

been modified to execute only four iterations. Note that

macro characteristics such as the number of iterations of

the outer loop are clearly visible. Many of these VRPs

exhibit interesting and insightful terrains.

tomcaW4.Al .Vmvi2.krp (-30,30,1 5)

Time oy 5

Dlst (log2)

Figure 3-4 Sample VRP, from kvr?cati.

4.0 Lower Bounds on Physical Dimensions

Given a VRP, it is possible to compute the minimum

amount of local memory that is necessary in order to

achieve the performance level specified by the VRP. Since

one can arbitrarily decrease the size of the memory at level

i at the expense of increasing the bandwidth requirement

between the memory levels i and i+l, it is insufficient to

talk about size alone. We use the term physical dimension

to mean both the size and bandwidth for each level in the

memory hierarchy. In this section, we present two manage-

ment policies to help us compute this lower bound on

physical dimensions. Both policies guarantee zero memory

penalty when the memory system is at least as large as the

computed lower bound.

Both policies assume a memory hierarchy with small,

high-speed memory close to the CPU and large, slow-

speed memory far from the CPU. The highest level in the

memory hierarchy is the one next to the CPU. The lowest

level is the one farthest away from the CPU.

In our study, values are stored in the various levels of the

memory hierarchy and can be moved between levels.

Unlike in conventional cache memories, the principle of

inclusion, i.e. that lower levels must contain all of the data

held in higher levels, is not imposed.

4.1 Simple Policy

The Simple policy is based on the VFW plot. A value is

kept in a particular level of the hierarchy based on how far

in the future the value will be used. At any given time, all

values with next use distance x such that xi-l < x ~ xi are

stored in Mi, level i of the memory hierarchy. Values that

will be needed soon are stored closer to the CPU than those

that will be needed later on. As time passes on, and the

next use distance of a value decreases to a critical point, the

value is automatically moved to the next higher level in the

hierarchy. By the time that a value is needed for a computa-

tion, it has been moved to the level in the memory hierar-

chy that is closest to the CPU. At any given time, each

value can be in exactly one level. In other words, values

are not allowed to be in the register file and the cache at the

same time.

“%3 ‘ Next Use
Distance

Figure 4-1 Obtaining memory size require=
ments from the VRP.

74

Given such a management policy, it is possible to find

the lower bound on the size and bandwidth requirement of

each level of the memory hierarchy by examining a pro-

gram’s VRP plot. At any given time tj, the number of live

values can be obtained as follows. The intersection of the

VRP plot with the plane t= ; produces a curve (the bold

line in Figure 4-l).

The area under this curve is the total number of values

live at ~. Thus the size requirement of Mi can be found by

integrating over a portion of the curve (from xi-l to xi) and

finding the maximum of such integrals along the time axis.

The bandwidth requirements can be found in a similar

way. The intersection of the VRP surface with the plane x =

xi.l produces a curve (bold line in Figure 4-2). The height

of this curve at a point in time is the number of values that

are transferred from Mi to Mi.l at that time. The area under

the curve is the total number of values transferred over the

course of the program’s execution. To find the maximum

bandwidth requirement, it is only necessary to find the

highest point on this curve.

flt,x)

T’

Value
Live -------

t

<

-w
Time

XL

I Figure 4-2 Obtaining bandwidth require-
I ments from the VRP.

The weakness of the Simple policy is its potential poor

utilization of memory. Values are assigned to levels in the

memory hierarchy based only on their next use distances.

This can result in many unoccupied spaces in the highest

levels of the memory hierarchy while values with large

next use distances are written to lower levels,

4.2 Pack Policy

In the Pack policy, values are stored in the highest level

of the memory hierarchy first. Only when the highest level

fills up are values stored in the next lower level.

When inter-level transfer of values are needed, the

model always attempts to space the transfers apart as much

as possible to minimize the instantaneous maximum band-

width requirement of the program.

Using this policy, we can compute the minimum amount

of inter-level bandwidth required given the capacity (or

size) of each level.

We have found that the bounds computed using the Pack

policy are always lower than those computed using the

Simple policy. This paper will only present data obtained

using the Pack policy.

5.0 Implementation

The software used in our data collection and visualiza-

tion consists of the three components shown in Figure 3-2.

Using the ATOM Tools [23], we instrument the bench-

marks to produce instruction and data traces, which are fed

into the timing simulator for the DEC Alpha 21064. The

simulator takes into consideration data dependence, struc-

tural dependence, issue policy, and cache misses to pro-

duce timing information for all instructions executed. The

output of the simulation is a VRP, which can be used to

compute lower bounds on physical dimensions or to pro-

duce a VFW plot. In the rest of this section, we discuss

some issues involved in our software implementation.

5.1 ~acking Values

A value v is created when an instruction performs a com-

putation and writes the result v to a destination register, say

R3. The only way to know that v dies is when a later

instruction overwrites R3, because there is no longer a way

to reference v.

However, it is possible for an intervening move instruc-

tion to copy v into some register R4. In this case, v is dead

only when both R3 and R4 are overwritten by later instruc-

tions, A related issue is the computation of reuse distances.

After v is referenced through R3, the next reference to v

may be made via R3 or R4. If the trace processing software

only looks for references to R3, the result can be incorrect.

In more complicated cases, a value can simultaneously

reside in several registers as well as several memory loca-

tions. Our software tool solves these problems by mapping

registers and memory locations to a value space, where

information about values is kept.

5.2 Other Tools

In addition to the VRP module, another software tool

called VMW (Vkalization-based Microarchitecture

Workbench) [9] has been developed at Carnegie Mellon

University. Using VMW, a timing simulator for an arbi-

trary machine can be automatically “compiled” from a set
of machine description files. This is how the Alpha 21064

simulator is built. A module to construct the VRP is then

added to the VMW generated simulator, We use the MAT-

75

LAB software to produce VRP plots. In this paper, we use

the Alpha AXP 21064 as the experimentation vehicle, due

to the availability of the ATOM profiling tools from DEC

and actual 21064 based systems for physical validation.

6.0 Experimental Results

This section presents two major groups of results for a

set of 16 benchmrulcs. Only read traffic is considered, since

it has the bigger impact on performance.

The first group contains the lower bounds on the band-

width of the memory hierarchy that is necessmy to achieve

zero memory penalty given the capacities of the Alpha

21064’s local memory. The lower bound on the required

bandwidth of the memory system is found by measuring

the peak bandwidth requirements of the programs. We also

do sensitivity analysis on the effects of varying the capaci-

ties. Our experiments consider reuse only. They do not

account for the traffic generated the first time that an ini-

tialized static variable is read from memory, nor do they

account for program input.

The second group contains memory system statistics,

which includes the efficiency of bandwidth usage on the

Alpha 21064 and the speedup that can be expected if it

were possible to achieve zero-cycle EML. These data are

for an Alpha 21064 system, a dual issue microprocessor

with SK each of onchip instruction and data cache. These

Level 1 caches are dh-ect mapped and have 32-byte lines.

For our experiments we assume that there is a 256K Level

2 data cache with 2-way set associativity and 32-byte lines.

The L2 data cache has a write allocate policy. In the

remainder of this paper, the term cache is used to mean

data cache.

The simulations are run on DEC 3000 Models 400 and

500. These are Alpha 21064 systems with 512K Level 2

combined cache and 64M RAM. They run at 133MHz and

150MHz respectively. On the Model 400, the simulator (in

which VRP module is embedded) run at the rate of approx-

imately 7,000 simulated cycles per second.

Table 6-1 lists the 16 benchmarks used in the experi-

ments. They have been divided into three groups to sim-

plify data presentation. The first group is the Integer
benchmarks, which consists of two benchmarks from SPE-

CINT 92, two graphics programs and a quicksort. The next
group is Nasa7, which consists of six benchmarks from

SPECFP 92’s NASA7 benchmark, which has been broken

up to reduce simulation time and to expose characteristics

of the individual programs. The last group is SpecFP,
which contains other floating-point benchmarks from

SPECFP 92. The last column in the table is the number of

cycles the programs take to execute on a real memory sys-

tem. These numbers are obtained from the timing simula-

tor, and they match quite closely with actual run times on

the DEC 3000 systems.

Table 6-1 Benchmark descriptions

I wteh- 1 Di@mmtinn$
1 Rut lime

mark (eye]

cjpeg 128x128 BW image. 9,024,934

. commess 1 iteration. (SPEC92 uses 20.) 119,446,305

y mtw 4 frames w/ fast dithering. 17,557,875

G quick 5,000 elements. 1,090,390

fllsp 5 queens (SPEC92 uses 9.) 20,733,986

btrix 1 iteration. 0fASA7 uses 20.) 119,837,396

I vocnta I 5 iterations (NASA7 uses 400.) I 43.899,386.
doduc Tiny input from SPEC92. 98,732,815

E
ear Modified short input from SPEC92 260,503,257

!d hvdro2d Short inuut from SPEC92. 10,566,371

$ swm256 I 5 iterations LSPEC92 uses 1,200). I 81,158,983

tomcatv I 4 iterations (SPEC92 uses 100.) 61,636,976

6.1 Computation of Lower Bounds

In this subsection, we measure the amount of bandwidth

that is required to run the benchmarks with no memory

penalty on a memory hierarchy with the same sizes as that

of the DEC Alpha 21064. Table 6-2 lists the capacities of

the Alpha 21064’s memory system.

Table 6-221064 memory system parameters.

Description IRegister

Fde IL1 Cache L2 Cache

Size (bytes) 512 8K 256K

Size (# vahres) 64 1,024 32,768

The 21064 has a total of 64 registers, 32 in the floating

point register file and 32 in the integer register file. The

sizes of the L1 and L2 caches (M2 and M3) are computed

by assuming that values are 64 bits wide. If values are 32
bit wide instead (which is true for many of the bench-

marks), the sizes of the 21064’s local memory would be

twice the numbers stated in the table.

Table 6-3 lists the peak bandwidths required by the pro-

grams. They are computed from the VKPs using the above

parameters, For comparison the last row of the table lists

the actual bandwidths for the 21064’s memory hierarchy.

The 21064 can issue two instructions every cycle, each of

which can read two values from the register file, for a total

76

of four value reads per cycle. It can execute one load per

cycle, hence the txansfer rate of one between the register

file and the L1 cache. The bandwidths into the L1 and the

L2 cache are computed with the assumption of 64 bit wide

values. The L1 can read in 128 bits of data in four cycle, or

two values every four cycles. The L2 can read 128 bits of

data in seven cycles, or two values every seven cycles.

Table 6-3 Peak bandwidth required by programs
(efficient memory).

Bandwidth fiwrt hWW kwe&i@$

Program CPU Reg Fiis H mche L2 cache

cipeg I 4.000 I 0.104 I 0.024 i 0.000

!

I

cholsky 4.000 0.244] 0.139 0.046

% emit 4.000 0.177 I 0.068 0.057

2 frt 4.000 0.340 0.332 0.170

mxm 4.000 0.316 0.316 0.004

vpenta 4.000 0.247 0.245 0.069

doduc 4.eQo 0.246 0.014 0.000

$ ‘a ~ 6.000 I 0.083 I O.000 I O.OQO

hydro2d 5.OQO] 0.352 I 0.11-.-19 0.000

z SWM256 4.000 I 0.293 0.289 0.253

tomcatv I 4.0001 0.449 0.446 ().:392,
21064 I 41 11 0.5 I 0.286

The entries in this table specify the maximum bandwidth

requirement of each program. For example, cjpeg (the first

program in the first group) has a bandwidth requirement of

0.104 values per cycle between L1 cache and-the register

file. This means that during the time of greatest traffic

intensity between L1 cache and the register file, cjpeg

needs to be able to transfer one value from L1 cache to the

register file every 9.6 cycles (9.6 = 1 / O.104) in order to

meet the value usage deadlines specified in the VRP

One value per 9.6 cycles is the peak bandwidth require-

ment. The bandwidth requirement averaged over the

course of the program’s execution is just one value per 40

cycles (see Table 6-4), about one fourth of the peak,

When we first examined this table, we were baffled by

the fact that mpeg, ear, and hydro2d can require more than

four values per cycle when only two instruction can be

issued per cycle, and each can only consume up to two val-

ues. It turns out that this is due to a memory optimization

arises infrequently and has no visible impact on other parts

of our data.

Consider the last three columns, which lists the needed

bandwidth into the register file, the L1 cache, and the L2

cache. For all benchmarks except tomcatv, the needed

bandwidth is always quite a bit less than the actual band-

width of the 21064. The entry in bold is the only one that is

greater than the actual 21064 bandwidth. Approximately

half of the benchmarks listed can store all of their interme-

diate values within the caches, These benchmarks are the

ones with a zero L2 bandwidth requirement. One of them,

ear, can fitall of its intermediate values within the register

file and the 8K L1 cache.

For comparison, Table 6-4 shows the average bandwidth

required by the programs. All average bandwidths are con-

siderably less than the peak bandwidths.

Table 6-4 Average bandwidth required by
programs (efficient memory).

~ compress 1.076 0.048 0.030 0.008

& mpeg 1.162 0.019
G

0.002 0.000

quick 1.234 0.045 0.026 0.000

[Xtisp I 0.7851 0.039 1 0.0091 0.000

btrix I 0.720 I 0.123 I 0.061 I 0.019

cholsky 0.735 0.117 0.081 0.025
~ emit 0.957
g

0.055 0.035 0.002

fft 0.972 0.102 0!100 0.091

t mxm 1.238 I 0.214 I 0.213 I 0.003

m- SWM256 0.985 0.104 0.099 0.068

tomcatv 0.923 0.117 0.116 0.068

21064 4 1 0.5 0.286

We now examine the effects of varying the capacities of

each level of local memory on the maximum bandwidth

requirements of the programs. For each level, the capacity

is varied from one fourth to twice the capacity of the corre-

sponding level in the 21064. Figure 6- 1,Figure 6-2, and

Figure 6-3 plots the required bandwidth versus capacity for

the register file, L1 cache and L2 cache respectively. For

performed by the DEC compiler, which can cause our soft-
ware to register three value consumption for each instruc-

tion executed under a rare situation. This special case

77

the caches, the capacities are specified in both kilobytes

and in number of values.

1.2

1 -
cjpeg 4-

compress + -
mpeg +

0.8 . quick * .
xlisp .~.....

0.6 .

0.4 .

G

s
2 0

a

~ 1.2
btrix +

u 1 cholsky t -
emit -s-

0.8

‘ ~ ~

1

fft *
mxm +

z 0.6 . .%
G

vpenta ~-

g 0.4
\.\

“g

; 0.2

al

$0
z
D

~ 1.2.-
g doduc +

;~ - ear + -
hydro2d -e--

0.8 . swm256 -x--- -
tomcatv -A--

0.6 .

0.4 .
&—’—— --A

16 32 64 128

Capacity (values)

Figure 6-1 Peak bandwidth into register file.

The three plots of Figure 6-1 show the expected charac-

teristics of decreasing bandwidth requirement when the

capacity is increased, Most programs get the largest

decrease in bandwidth requirement in going from a 16 to a
32 entry register file. Many of them stand to benefit from

even larger register files.

For the L1 cache, the benefit of increasing capacity is not

quite as dramatic. Most programs show only gradual

decrease in bandwidth requirement with increasing capac-

ity. The most notable exception is mxm (in the middle plot

of Figure 6-2). The benchmark mxm is a blocked matrix

multiply that operates on sections of two matrices. The two

sections together contains 1,088 values, which will fit

entirely in a 2,048 entry cache, but not in a 1,024 entry

cache. This explains the abrupt drop in bandwidth require-

ment in going from a L1 cache that can hold 1,024 values

to one that can hold 2,048 values,

0.4

0.3

0.2

0.1

:

-1

cjpeg + .
compress +

mpeg +
quick -x--- .
Xlisp -A--

0.4 . btrix +
cholsky +

x
0.3 .A” emit -E+--

----* -----M

0.2 .+
‘. rnxm +---

H
0.1 .

I swm256 +

0.2 tomcatv +
1

0.1 . H

o
256 512 1,024 2,048

(2Kb) (4Kb) (8Kb) (16Kb)

Capacity (values)

Fiaure 6-2 Peak bandwidth into L1 cache.

For the L2 cache (Figure 6-3), the fist plot shows the

Nasa7 benchmarks. compress is the only integer bench-

mark with nonzero bandwidth requirement. It is plotted

along with two SpecFP benchmarks in the second plot, As

this figure shows, most benchmarks have bandwidth

requirements that drop off to zero as the size of the L2

78

cache is increased to 64K values. swm256 and tomcatv are

the only benchmarks with working sets larger than 64K.

Q 0.4 = btrix + .

z cholsky +
$ emit +
~ 0,3

‘w~. ~

fft *

f mxm +
vpenta + -

z 0“2

a
~ 0.1 .%--. -.*

----- ----
“3
H(-j

3
0

; 0.4 . “-””-”*”~
.

2 ““”---A

j: ~

fi” compress t
%.+
$ ~1

swm256 -x---

s“
tomcatv A

lx! +

o
8,192 16,384 32,768 65,536

(64Kb) (128Kb) (256Kb) (512Kb)

Capacity (values)

‘igure 6-3 Peak bandwidth into L2 cache.

6.2 Memory System Statistics

What can we expect to gain from achieving zero-cycle

EML? Table 6-5 lists some relevant statistics about the

benchmarks’ performance on the memory systems. The

second column of the table is the speedup that can be

obtained by executing on an autonomous memory system

(with EML = O) as compared to executing on the 21064’s

memory system. It is computed as (t#J -1, where L is the

execution time on the real memory system (the 21064’s

memory system), and ta is the execution time on the auton-

omous memory system. This represents the maximum

amount of performance gain that is possible from improv-

ing the memory system and the compiler’s storage alloca-

tion. Column three lists the actual EML, which measures

the efficiency of the 21064’s memory system in delivering

needed values to the CPU. The fourth column is the aver-

age number of value references that occur for every mem-

ory instruction that is executed. Not surprisingly, programs

that stand to benefit the most from the autonomous mem-

ory system are the ones with a small number of value refer-

ences per memory instruction (xlisp and compress.)

Column five is the miss rate of the L1 cache. It shows

that programs with high miss rates (cholsky, H, tonzcatv,

and vpenta) generally have high EML as well. However,

the opposite is not true. xlisp has an EML of about 0.6, but

its miss rate is only 10%. Thus an insufficiently large (or

poorly utilized) cache is a contributing factor to the poor

performance of the memory system, but it is not the only

factor.

The last column lists the bandwidth efficiency between

the L1 cache and the L2 cache. We define the transfer of a

value into L1 cache (from L2 cache) as useful if the value

is then loaded into the register file before it is overwritten

in the L1 cache. The bandwidth efficiency is the number of

useful transfers divided by the total number of values

transferred. As the column shows, half of the benchmarks

listed have bandwidth efficiency of less than 50%. This

means that over half of the values loaded into the L 1 cache

are either never used or are overwritten (due to cache line

replacement policy or insufficient capacity) before they are

used.

Table 6-5 Memory System Statistics

Fw%litid EMI.! #vti I,J Ll 13W
Program Speedap 6ydvaI &lmn Misses EfMency

-,..I<-- ----
cjpeg I 32.5% I 0.169 >.,44 0.5% 5Y.5”h

compressil. 99.1% I 0.510 3.48 20,0% 29.8%

1.161 5.54 15.6% 25.9%
e quick I 58.9% I 0.285 4.09 1.6% 81.4%

-.
?.9% 44.1%

I
btrix I 23.7% 1 0.251 I 4.02 I 31.8% 48.5%

41 .9%
Q emit
g -

23.2% 0.169 5.39 7.1% I 86.7%

fft 67.2% 0.444 3.86 35.8% I 56.8%

70.7%

32.0%

I doduc I 14.7% I 0224 i 4.15 I 8.1% I 56.5%

I cholskv I 64.7% I 0.532 ! 3.68 I 43.9% I

mxm I 46.8% I 0.245 I 4.45 I 15.4%

vpenta 28.5% I 0.300 I 4.63 I 42.8%

. ----

R “ 24.7% 0.237 4.25 2.2% 78.7%

~
hydro2d 19.7% 0.218 4.99 16.0% 78.8%

swm256 39.5% 0.266 4.59 20.3% 34.0%

55.5%I tomcatv 36.8% I 0.286 I 4.42 I 35.3% I

We have placed the last two columns here to point out

some of the characteristics of the traditional memory hier-

archy, not to criticize the design of the 21064 in particular.

Memory system design requires the consideration of many

complex issues, In the case of the 21064, the designers

have placed clock speed as a high priority. This explains

the use of a small direct-mapped Level 1 cache, which can

be expected to have higher miss rates and lower bandwidth

efficiency than a cache of greater capacity and/or greater
set associativity.

79

Table 6-5 shows that performance gain of up to 100% is

possible with an autonomous memory system. In Table 6-

6, we show the peak bandwidth required by the programs

in order to achieve zero-cycle EML on an autonomous

memory system. Once again, we have used the bold font at

the places where a program need more bandwidth than is

available from the 21064. We would expect the bandwidth

requirement of the programs to increase because there are

no longer any memory instructions to spread apart value

references. Comparing this table against Table 6-3, we see

that most programs have increased their bandwidth

requirement by less than 100’%. torncatv has more than tri-

pled its bandwidth requirements while cholsky andfl have

also increased their bandwidth requirements significantly.

However, most programs still require no more bandwidth

than what the 21064 already has.

Table 6-6 Peak bandwidth required by programs
(autonomous memory).

Batdwidth from 10VAXlevel @t#cyc~

cjpeg 3.000 0.125 0.029 0.000

~ compress 3.000 0.154 0.093 0.039

y mpeg 5.000 0.287 0.006 0.000
J? quick 3.000 0.198 0.161 0.000

xlisp 3.000 0.143 0.036 0.000

btrix 4.000 0.337 0.161 0.033

cholsky 4.000 0.800 0.255 0.084

b emit 4!OO0 0.307 0.135 0.109
i
z fft 4.000 0.828 0.807 0.418

mxm 4.000 0.510 0.500 0.006

vpenta 4.000 0.361 0.359 0.100

doduc 4.oci) 0.366 0.016 0.000

$ ‘m
5.000 0.107 0.000 0.030

hydro2d 4.000 0.504 0.148 0.000

& swm256 4.000 0.472 0.436 0.412

tomcatv 4.000 1.404 1.391 1.226

21064 4 1 0.5 0.286

7.0 Conclusion

Memory system performance is becoming an increas-

ingly critical part of a program’s performance. This has

resulted in a significant amount of research into software

and hardware techniques for improving memory systems

performance. By introducing our concept of zero-cycle

EML, we have provided a way to measure the maximum

amount of performance gain that can ever be realized from

such techniques. The potential can be considerable.

According to Table 6-5 as much as 100% performance

improvement is possible by improving the memory system

alone.

We have presented a framework for a systematic

approach to understanding the much talked about memory

bottleneck problem. Four issues are involved in memory

system performance: predictability, value reuse, manage-

ment policy, and physical dimensions (size) of the memory

system. By factoring out the issues of predictability and

management policy, we are able to use value reuse infor-

mation (provided by the VRP) to compute the minimum

physical dimensions of the memory system that is required

to achieve zero memory penalty. Our measurements show

that the Alpha 21064 has more than the minimum memory

required to achieve zero memory penalty for many pro-

grams, yet these programs have miss rates as high as 43%.

This indicates that the problem isn’t with the size of local

memory, but with program predictability and/or memory

management policy. Since many of these programs are

floating-point applications with high degree of predictabil-

ity, we can possibly draw the conclusion that memory man-

agement policy is one area to investigate in order to reduce

the EML and achieve the potential speedup,

8.0 Future Directions

For expediency reasons, in this paper we have chosen the

Alpha 21064 superscalar processor as the experimentation

vehicle. The execution traces, used for generating all the

VRPS and the experimental results on memory system per-

formance, are all based on the Alpha 21064. Essentially the

microarchitecture parameters are kept fixed in this study.

The framework and associated software tools we have

developed are general and can be applied to other architec-

tures and microarchitectures, This is one possible direction

of future research. The width of the machine and the

aggressiveness of the microarchitecture can be varied to

produce variations in the VRPs, which can in turn produce

different results on memory system performance and

requirements. In fact studies can be performed using an

“infinite machine,” in which the microarchitecture, or more

specifically, machine resource constraints are not consid-

ered. The actual record of execution as well as the resultant

VRP are strictly a function of the program characteristics

and unaffected by any machine structural dependence.

Such machine-independent results can characterize the

asymptotic behavior of memory system performance.

While this paper primarily focuses on the analysis

aspect, a great deal of future work can be done along the

synthesis aspect. If the results of this paper can be general-

ized, they provide significant motivations for exploring

better approaches to memory management policies. The

results in Table 6-5 seem to indicate that current memory

80

systems incur substantial EML overhead, and if EML=O

can be achieved, significant performance gains are possi-

ble. Furthermore, Table 6-3 implies that achieving EML=O

does not necessarily require unrealistic capacities and

bandwidths for the physical dimensions of the memory

hierarchy. Future work can reexamine current memory

management policies to determine the reasons for their

ineffectiveness and develop more effective policies to

reduce the EML overhead. Recent techniques for data

prefetching [6] [7] [10] [21] can be viewed as specific

attempts along this direction. Other more aggressive and

perhaps more comprehensive approaches can potentially

be developed.

9.0 Acknowledgment

The authors would like to thank the anonymous review-

ers for the detailed reviews. We would also like to thank

the Pittsburgh Supercomputing Center for the use of its

DEC Alpha SuperCluster. This research is supported in

part by an IBM Cooperative Fellowship and in part by NSF

Grant CDA-9214908.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

T. M. Austin and G. S. Sohi, “Dynamic Dependency

Analysis of Ordinary Programs”, Proc. of 19th ISCA, 1992.

D. Callahan, S Carr, and K. Kennedy, “Improving Register

Allocation for Subscripted Variables”, Proc. of PLDI, 1990.

D. Callahan, K. Kennedy, and A. Porterfield, “Software

Prefetching”, Proc. of 4th ASPLOS, 1991.

S. Carr and K. Kennedy, “Scalar Replacement in the

Presence of Conditional Control Flow”, Sof~are--Practice

and Experience, vol. 24(l), Jan. 1994.

T. Chen and J. Baer, “Reducing Memory Latency via Non-

blocking and Prefetching Caches”, Proc. of 5th ASPLOS,

1992.

T, Chen and J. Baer, “Effective Hardware Based Data

Prefetching for High-Performance Processors”, IEEE

Transactions on Computers, vol. 44, no. 5 (May 1995).

W. Y. Chen, S. A. Mahlke, P. 1?Chang, and W. W. Hwu,

“Data Access Microarchitectures for Superscalar

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Processors with Compiler-Assisted Data Prefetching”,

Pmt. of 25th MICRO, 1991.

C. Chi and H. Dietz, “Unified Management of Registers

and Cache Using Liveness and Cache Bypass”, Proc. of

PLDI, 1989.

T. Diep, “VMW A Visualization-based Microarchitecture
Workbench.” Ph.D. Thesis. Carnegie Mellon University,
June 1995.

J.W.C. Fu and J. H. Patel, “Stride Directed Prefetching in
Scalar Processors”, Proceedings of the 25th Annual

International Symposium on Microarchitecture, 1992.

D. Gannon, W. Jalby, and K. Grdlivan, “Strategies for

Cache and Local Memory Management by Global Program

Transformation”, Journal of Parallel and Distributed

Computing, vol 5, 1988.

G. H. Gohrb and C.F. Van Loan, Matrix Computations,

Johns Hopkins University Press, 1989.

E. H. Gornish, E. D. Granston, and A. V. Veidenbaum,
“Compiler-Directed Data Prefetching in Multiprocessors
with Memory Hierarchies”, Proc. of ZCS, 1991.

K. Grimsrud, et al, “On the Accuracy of Memory Reference

Models”, Proc. of 7th Int. Conf on Modelling Techniques

and Tools for Computer Performance Evaluation, May

1994.

G. F. Grohoski, “Machine Organization of the IBM RISC

System/6000 Processor”, IBM Journal of Research and

Development, Vol 34, Num 1, January 1990, pp. 37-58.

L. Gwennap, “Digital Leads the Pack with 21164”,

Microprocessor Report, Vol 8, Num 12, September 12,

1994.

J. L. Hennessy and D. A. Patterson, Computer Architecture:

A Quantitative Approach, Morgan Kaufmann, 1990.

F. Irigoin and R. Triolet, “Supernode Partitioning”, Proc. of

15th POPL, 1988.

A. C. Klaiber and H. M. Levy, “An Architecture for

Software-Controlled Data Prefetching”, Proc. of 18th LSCA,

1991.

G. D, McNiven and E. S. Davidson, “Analysis of Memory

Referencing Behavior For Design of Local Memories”,

Proc. of 15th ISCA, 1988.

T. C. Mowry, M. S. Lam, and A. Gupta, “Design and

Evaluation of a Compiler Algorithm for Prefetching”, Pmt.

of 5th ASPLOS, 1992.

V. Sarkar and G. R. Gao, “Optimization of Array Accesses

by Collective Loop Transformations”, Proc. of KS, 1991.

A. Srivastava and A. Eustace, “ATOM: A System for

Building Customized Program Analysis Tools”, Proc. of

PLDI, 1994.

M. E. Wolf and M. S. Lam, “A Data Locality Optimizing

Algorithm”, Proc. of PLDI, 1991.

81

