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A general framework that integrates both control and data speculation using alias profiling and/or
compiler heuristic rules has shown to improve CPU2000 performance on Itanium systems. How-
ever, speculative optimizations require check instructions and recovery code to ensure correct exe-
cution when speculation fails at runtime. How to generate check instructions and their associated
recovery code efficiently and effectively is an issue yet to be well studied. It is also, very important
that the recovery code generated in the earlier phases integrate gracefully in the later optimiza-
tion phases. At the very least, it should not hinder later optimizations, thus, ensuring overall
performance improvement. This paper proposes a framework that uses an if-block structure to
facilitate check instructions and recovery code generation for general speculative optimizations. It
allows speculative instructions and their recovery code generated in the early compiler optimiza-
tion phases to be integrated effectively with the subsequent optimization phases. It also allows
multilevel speculation for multilevel pointers and multilevel expression trees to be handled with no
additional complexity. The proposed recovery code generation framework has been implemented
and evaluated in the Open Research Compiler (ORC).

Categories and Subject Descriptors: D3.4 [Programming Languages]: Processors—compiler; op-
timization
General Terms: Algorithms, Performance, Design, Experimentation

Additional Key Words and Phrases: Recovery code, multi-level data speculation, speculative SSA
form

1. INTRODUCTION

Control and data speculation [Heggy et al. 1990; Bringmann et al. 1993; Mahlke
et al. 1993; Wu et al. 1994; Postiff et al. 2000; Ju et al. 2000; Mahadevan et al.
2000; Lin et al. 2003, 2004] has been used effectively to improve program per-
formance. Ju et al. [2000] proposed a unified framework to exploit both control
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and data speculation targeting specifically for memory latency hiding. In their
scheme, data speculation is exploited by hoisting load instructions across po-
tentially aliasing store instructions, thus more effectively hiding the memory
latency. In Lin et al. [2003], a framework is proposed to support more gen-
eral speculative optimizations, such as speculative register promotion and spec-
ulative partial redundancy elimination, in addition to data speculative code
scheduling. However, the crucial issues of check and recovery code generation
have so far been mostly overlooked.

The recovery code generation scheme used by Ju et al. [2000] (referred to as
the JNMW algorithm in this paper) during the code scheduling phase can be
understood as follows. When a load instruction is speculatively moved up to
an earlier program point, a special check instruction, chk, is generated at its
original location. Some of the instructions that are flow dependent on the load
instruction could also be moved up with the speculative load instruction. To
facilitate recovery code generation, the compiler introduces additional depen-
dence edges for the new chk instruction. This simple scheme works reasonably
well because the generated recovery code rarely interacts with other compiler
optimizations (instruction scheduling is usually performed near the end of com-
piler optimization phases). In Lin et al. [2003], a check instruction is explicitly
modeled as an assignment statement and the corresponding recovery code is
generated separately. These additional assignment statements could hinder
the subsequent optimizations and impact the performance of the speculative
optimizations, unless we take extra care of them in later analyses and opti-
mizations. This would make later analyses and optimizations more complex
and less effective.

In this paper, we propose a unified framework for recovery code genera-
tion that supports general speculative optimizations including speculative par-
tial redundancy elimination (PRE) (usually performed early) and instruction
scheduling (usually performed late). It uses an explicit control flow structure to
model check instructions and recovery code. Using this model, the check instruc-
tion and its recovery code can be treated as a highly biased if-block in later anal-
yses and optimization phases. The check instructions and their recovery blocks
can thus be integrated seamlessly in the later phases such that they are ana-
lyzed and optimized as if they were ordinary instructions without special treat-
ment [Ju et al. 2000; Lin et al. 2003]. This approach is most obvious for handling
multilevel speculation, such as cascaded speculation for multilevel pointers [Ju
et al. 2000]. To the best of our knowledge, this is the first general compiler frame-
work for recovery code generation. Our experimental results show that the
proposed framework can effectively support general speculative optimizations.

Compared to our proposed if-block-based recovery code generation, exist-
ing speculation approaches either delay data speculation until final instruc-
tion scheduling or greatly constrain effective code motion applicable to early
speculative optimizations [Ju et al. 2000; Mahlke et al. 1993; Lin et al. 2003].
Our work advances the field by providing a structured and general approach
to model speculation and its associated recovery code while not limiting opti-
mization opportunities. It transforms the problem of the speculation of depen-
dent instructions into partial ready code motion that a good instruction level
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parallelism (ILP) compiler already tackles. Furthermore, the control flow gen-
erated for the speculation check comes with its inherent control profile (i.e., the
branch to the recovery block is rarely taken) in our presented model.

The rest of the paper is organized as follows. Section 2 describes our scheme
to model check instructions and their recovery code generation using explicit
if-block structures. In Section 3, we show how to generate recovery code for both
single and multilevel speculation in our speculative PRE framework. Section
4 discusses how to model the speculation of dependent instructions as partial
ready code motion. In Section 5, we discuss how to eliminate redundant check
instructions. Section 6 presents and discusses experimental results. In Section
7, we review previous recovery code generation algorithms and explain why
they are inadequate for handling general speculative optimizations. We give
our conclusions in Section 8.

2. AFRAMEWORK FOR CHECK INSTRUCTIONS AND RECOVERY
CODE GENERATION

A proper representation of a check instruction and its corresponding recovery
block is essential in supporting speculative optimizations. A recovery block is
the recovery code for a specific check instruction. In the rest of the paper, we
will use recovery block and recovery code interchangeably. In a compiler, inter-
mediate representation (IR) is important, because they could interact with all
optimization phases in a very complicated way. In this section, we present our
model and IR for check instructions and recovery code.

We explicitly represent the semantics of the check instruction and its corre-
sponding recovery block as a conditional if-block. The if-block checks whether
the speculation is successful or not. If not, the recovery block will be exe-
cuted. Initially, only the original load instruction associated with the specula-
tive load is included in the recovery block. For both data and control speculative
optimizations, checks and recovery code are represented as if-blocks. For data
speculation, the if-block can be inserted either at the original location of the
speculative load or after the last weak update, but before the use of speculative
load. The term weak update means the update is unlikely to be aliased with
the load and thus can be speculatively ignored [Lin et al. 2003]. For specu-
lative code scheduling [Ju et al. 2000], the speculative load refers to the load
which is determined to be speculatively hoisted across the potentially aliased
store. For speculative PRE [Lin et al. 2003], the speculative load refers to the
load, that is marked with speculative redundant flag. For control speculation,
the if-block can be inserted at the original location of the speculative load.
Since the compiler selects data speculation that has a low aliasing probabil-
ity, mis-speculations should be unlikely to happen. Similarly, checks for the
selected control speculation should also be unlikely to fail. Hence, the compiler
marks the if-condition as highly unlikely to be true. Based on such an explicit
representation, later analyses and optimizations can treat this if-block as any
otherhighly biased if-blocks. There will be no need to distinguish speculative
code from non-speculative code during later analyses and optimizations, as will
be discussed in Section 4.
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sl: ..=*%p sl: ..=%**p[hi] sl: r1="*pi /*1daflag */
§2: *¥q=... s2: **q=.. s’ ...=%*n
(may update **p and *p) | s3: ...=**p +10 S2 *Eq =,
83: ..=%*p+10; [hi<speculative>] s4: if (r is invalid){  /* chk flag */
s5: n="*pi
}
s6: 3¢ (11,12)
s3: ...=*13+10
(a) source program (b) output of the (c) output of the code motion step for
renaming step in speculative PRE for expression *p if
speculative PRE for the check instruction is modeled as an
expression *p, where /1 is explicit control flow structure
a hypothetical temporary
for the load of *p
Fig. 1. Example of recovery code generation for speculative PRE.
sl: if (cond) { s2: r=%*p /*1d.s flag */ ||s2’: 1d.sr=[p]
s2: L..=FFp; sl: if (cond) { sl: if (cond) {
} s3: if (risinvalid) { /* chk.s flag */ ||s3: chk.s r, recovery
s4: r="%*p s4:  next:
} s2: =*r
s2: =*r }
}
s6: recovery:
s7: Idr=[p]
s8: br next

(b) speculative version represented by if-
block based recovery code.

(c) output after speculative instruction
scheduling

(a) source program

Fig. 2. Example of recovery code generation in speculative instruction scheduling.

We use one example code in Figure 1a to illustrate the effect of our proposed
approach for speculative PRE [Lin et al. 2003]. We assume that *%g in s2 could
be potentially aliased with the loads *p and **p with a very low probability. The
second occurrence of the expression *p in s3 has been determined to be specu-
latively redundant to the first one in s1, as shown in Figure 1b. The compiler
inserts an if-then statement (in s4) after the weak update *q in s2 for the spec-
ulative redundant expression *p, as shown in Figure lc. The then part of the
if-then statement initially has just one single load instruction (i.e. the original
load instruction). The chk flag is used to mark those if-blocks that correspond
to check instructions. Those if-blocks will be converted to chk.a instructions, or
ld.c instructions (if the load is the only instruction in the recovery block) during
code generation.

Similarly, this recovery representation can also be applied to the control
speculation without any change. Considering the program in Figure 2a, the
frequency/probability of the execution paths can be collected by the edge/path
profiling at runtime and represented in the control flow graph. If the branch-
taken path (i.e., the condition being ¢true) has a high probability, the compiler
can move the load instruction across the branch and execute it speculatively
using the Id.s instruction. A check instruction (chk.s) is inserted at its home
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sl: ...=**p sl: Id.ar = [p] sl: Id.ar = [p]
sl’”: Id f= [r] s1’: Id.a f=[r]
s2: **q = .. s3: add v = 1,10 s3: add v = 1,10
s3: ...=**p+10 s2: st ... s2: st ...
s4: chk.a r, recovery_1 s4: chk.a r, recovery_1
label_1:
label_1: s5: chk.a f, recovery_2
label_2:
recovery_1:
s5: Id r = [p] recovery_1:
s6: Id f=[r] s6: Id r = [p]
s7: add v = 1,10 s7: Id f=[r]
s8: br label_1 s8: add v =110
s9: br label_1
recovery_2:
s10: Id f= [r]
sll: add v = 1,10
s12: br label_2

(a) Source (b) Only p could (c¢) p and *p could
program potentially be updated by potentially be updated by
intervening store **g intervening store **g

Fig. 3. Examples of multilevel speculation.

location to catch and recover from any possible exception. The Id.s and chk.s are
Itanium in structions that support control speculation. Figure 2b shows how we
use if statement to represent the recovery code. The later code generation phase
converts this special if statement into chk.s instruction, the load instruction in
s2’into Id.s instruction, and generates the recovery block as shown in Figure 2c.

3. RECOVERY CODE GENERATION IN MULTILEVEL SPECULATION

3.1 Check Instructions and Recovery Code Representation for Multilevel
Speculation

Multilevel speculation refers to the data speculation that occurs in a multilevel
expression tree. One of a typical example of multilevel speculation is shown
in the Figure 3a. It is also referred to as a cascaded speculation in Ju et al.
[2000]. If *g is a potential weak update only to *p, then the check instruction
and recovery block will be as shown in Figure 3b. The expression *%g could
also be a potential weak update to both *»p and **p. We need to generate two
check instructions for both *p and **p, as shown in Figure 3c, each with a dif-
ferent recovery block. According to our previous study [Chen et al. 2002, 2004],
there are frequent multilevel indirect references (e.g., multilevel field accesses)
in the CPU2000 C programs. Those references present rich opportunities for
multilevel speculative PRE.

The check and recovery code representation discussed in Section 2 can be ap-
plied directly to multilevel speculation without any change. In Figure 4b, only
*» may be modified by the potential weak update. In Figure 4c, both the ad-
dress expression *p and the value expression **p are candidates for speculative
register promotion. Hence, two if-blocks are generated. It is obvious that the
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sl:...=**p r =*p /*1d.a flag*/ | r;=%*p /* 1d.a flag */
fi =*n, fi =*r, /* 1d.a flag */
s2: ¥¥q=... v, =f; +10 v, =1, +10
...:f| ..:fl
s3: ... =*¥p+10 | **q=.. g =
if (r) is invalid){ /* chk flag */ | if (r) is invalid){ /* chk flag */
n=%p rn=%p
£=*r, = *r,
vy = i +10 v, =f5 +10
} }
13 <=0 (11, 12) 13 <0 (1), )
fy <0 (fi, f) fy <0 (f, £)
V3 <0 (v, V2) V3 0 (vi, v2)
ST V3 if (f; is invalid){ /* chk flag */
f4 = *r3
vy = f4 +10
}
fs <0 (f3, f2)
Vs <=0 (v3, v4)
.. = Vs
(a) Source (b) Only p could potentially be . .
program updated by intervening store **g u(pc)()i'ft :;?)y lijnf:ruvl:n;i)r?;egtt(l)?gi E;

Fig. 4. Examples of check instructions and their recovery blocks in multilevel speculation.

representation in Figure 4 matches very well with final assembly code shown
in Figure 3.

3.2 Recovery Code Generation for Multilevel Speculation

In this section, we will show how to integrate speculation support into partial
redundancy elimination (PRE). There are two main partial redundancy elimi-
nation schemes: one is bit-vector based [Knoop et al. 1992] and the other is SSA
form based [Kennedy et al. 1999]. In this paper, we focus on SSA form-based
PRE (SSAPRE), because it is used in Intel’s ORC compiler and our implemen-
tation is based on ORC.

There are six steps to identify redundant expression in SSAPRE: (1) Phi-
insertion, (2) Rename, (3) DownSafety, (4) WillBeAvail, (5) Finalize, and (6)
CodeMotion. The first two steps are aimed to identify the expressions that have
the same value and are redundant. The following step 3 and step 4 are intended
to handle the partial redundancy in the control flow graph. The Finalize step
determines the placement of expressions. The last step, the CodeMotion step,
transforms the code. More details can be found in Kennedy et al. [1999], and
Lin et al. [2003].

In our speculative SSAPRE framework, an expression tree is processed in a
bottom-up order. For example, given an expression ***p, we begin by processing
the subexpression *p for the first-level speculation, then the subexpression **p
for the second-level speculation, and last, *p for the third-level speculation.
This processing order also guarantees that the placement of check instruc-
tions and the recovery code generation are optimized level-by-level. There-
fore, when a subexpression is processed for the nth level speculation, every
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sl: r,=%*p /*1d.aflag*/ | sl: r,=%*p /*1d.aflag*/ | sl: r,=%*p /*1d.aflag*/ | sl: r,=*p /*1d.a flag */

sI’: ...=%*r [h] st .= [hy] sl”: fi="*n /*ldaflag*/ | sl ...=%*

s2: *kq=.. s2: *Fq=.. sI” ...=1f s2: **q=..

s4: if (r; is invalid){ s4: if (r; is invalid){ s2: *q=.. sd: 1,=%*p /* chk flag*/
/* chk flag */ /* chk flag */ s4: if (r) is invalid){ s3: vy =%, +10

s5: =% s5: r="*p /* chk flag */

} } 5. n=*p

s6: 13¢—@(ry, 12) s6: r3¢—@(r),12) s5%: f,="*r,

$6": h <« (h,h) 6" h, «¢ (h<speculative>, 1) | }

s3: v; =*r3 [h] +10 s3: vy = *r3 [hy] +10 s6: 13¢—@(ry, 12)

s7: fi—g(fi, f)
s8: if (f; is invalid){

/* chk flag */

s9: fy="*n

)

s10: fs%mfs, f))

s3: v =f+10
(a)Output of ¢ insertion step (b) Output of rename step for the | (c) Output of recovery code for (d) OU‘P}‘" of recovery <'x>de
for the 2™ level speculation, 2" Jevel speculation the 2" level speculation for the 1 level speculation
where h is hypothetical using assignment statement
temporary for the load of **p. representation

Fig. 5. Examples of recovery code generation in speculative PRE.

subexpression at the (n — 1)th level speculation has been processed, and its
corresponding recovery block (i.e., if-block) also generated. Here, we assume an
if-block will be generated at the last weak update of the subexpression. A reload
instruction for the value of the subexpression will be included initially in the
if-block.

Figure 1c shows the result after the first-level speculation on *p for the pro-
gram in Figure 1la. We assume * is aliased with both *p and **p with a very
low probability. Hence, *g in s2 is a speculative weak update for both *p and
**p. During the first-level speculation, the subexpression *p is speculatively pro-
moted to the register r. The subscript of r represents the version number of r.
As can be seen in Figure 1c, the value of *p in s1’ becomes unavailable to the
use in s3 along the true path of the if-block, because of the redefinition from
the reload instruction in s5. This is represented in the version number of r that
changes from r; to r3 because of the ¢(r1, r3) operation in s6.

In the second-level speculation for **p, we can also speculatively promote
**p to the register f. A hypothetical variable h is created for *r (i.e. **p) in s1’.
Figure 5a shows the result after the ¢-insertion phase in SSAPRE [Chow et al.
1997]. A ¢-function ¢(h, k) in s6’ is needed, because of the if-block in s4. The first
operand of ¢(h, h), which corresponds to the false path of the if-block in s4, will
have the same version number as that in s1’, because of the speculative weak
update in s2 after the rename step in SSAPRE [Chow et al. 1997]. However, the
second operand of ¢(h, k), which corresponds to the true path, is replaced by L,
because the value of 4 (i.e. *r) becomes unavailable due to the redefinition of r
in s5. The result is shown in Figure 5b.

The if-block in s8 is inserted after the speculative weak update of s2 with a
reload of * in s9 (Figure 5c). Because of the second operand of ¢(h1, L) in s6/,
the algorithm will insert a reload of *r (in s5’) along the ¢rue path of the if-block
(in s4) to make the loading of *3 in s3 fully redundant. That is, the existing
SSAPRE algorithm will automatically update the recovery block from the first
level (i.e., *p) without additional effort.
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A
B y=2 C C
a=x -
D a=x D
b=y
(a) instruction b=y is partially (b) partial ready code motion
ready at basic block D duplicates instruction b=y

Fig. 6. Example of partial ready code motion for latency hiding.

This advantage of the if-block representation for the recovery block can be
better appreciated if we look at the difficulties we would have encountered if
the check instruction is represented as an assignment statement. The expres-
sions *p and **p are speculative redundant candidates. Using an assignment
statement to represent a check instruction, the recovery block generated for
the expression *p is shown in Figure 5d. Since the value *r is redefined at s4,
the compiler cannot detect the expression * (i.e., **p) in s3 as speculatively
redundant (because r has been redefined). In order to support multilevel spec-
ulation, we would have to significantly modify the SSAPRE representation and
thus increase the complexity of the algorithm substantially.

4. INTERACTION OF THE EARLY INTRODUCED RECOVERY CODE WITH
LATER OPTIMIZATIONS

The recovery blocks, represented by highly biased if-then statements can be
easily maintained in later optimizations, such as instruction scheduling. In this
section, we illustrate this point using the partially ready code motion algorithm
[Bharadwaj et al. 1999] as an example. Consider the example in Figure 6a, if
we assume that the right branch is very rarely taken, the instruction 5 = y in
the basic block D can be identified as a P-ready (i.e., partial ready) candidate.
It will then be scheduled along the most likely path A—B—D, instead of the
unlikely path A—C—D. Figure 6b shows the result of such a code motion. The
instruction b = y is hoisted to the basic block A and a compensation copy is
placed in the basic block C.

The recovery code represented by an explicit and highly biased if-then state-
ment is a good candidate for P-ready-code motion. If there is a data-dependent
instruction that could also be hoisted before the recovery block, this instruc-
tion will be duplicated as a compensation instruction in the recovery block.
At the end of instruction scheduling, the recovery block would have been up-
dated accordingly and is already well formed. There is no need to trace the flow
dependence chain and generate the recovery block in a separate effort as in
the JNMW scheme. After instruction scheduling, we could easily convert these
if-blocks into check instructions and their respective recovery blocks.
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r="*p /* 1d.a flag */ ld.ar = [p]
f=*r /* 1d.a flag */ ld.a f= [r]
v=Ff+10 addv=",10
*Eq =... st ...
if (r is invalid){ /* chk flag */ chk.a r, recovery_1
r=*p label_1:
f=*r chk.a f, recovery_2
v =f+10 label_2:
}
if (f is invalid){ /* chk flag */
f=*r recovery_1:
v=1Ff+10 Id r = [p]
} 1d f = [r]
.=V add v= 1,10
br label_1
recovery_2:
1d f = [r]
add v= 1,10
br label_2
(a) output after instruction scheduling| (b) final output

Fig. 7. Recovery code generation for a speculative PRE after instruction scheduling.

Using the example in Figure la, the output code of the speculative PRE
(shown in Figure 5c¢) is further optimized with instruction scheduling. As can
be seen in Figure 7a, if the compiler determines the instruction v = f + 10 can
be speculatively hoisted across the store in the *g statement, it will duplicate
the instruction in the recovery block. The generated check and recovery code
are shown in Figure 7b.

Similar to that in speculative PRE, the proposed scheme can also be used
in speculative instruction scheduling for both control and data speculation. We
use the example in Figure 2a to show how to use partial ready-code motion
to achieve the effect of multilevel control speculation. Figure 8a shows the
intermediate representation after the compiler selects the load instruction *
as the candidate of partial ready-code motion and move * out of the branch.
The final code generation phase converts these two special if statements into
chk.s instructions and generates the corresponding recovery block as shown in
Figure 8b.

5. OPTIMIZING THE PLACEMENT OF CHECK INSTRUCTIONS AND
RECOVERY BLOCKS IN SPECULATIVE PRE

The newly generated check instructions and recovery blocks after the specu-
lative PRE may introduce unnecessary checks. For example, the algorithm de-
scribed in Section 3.2 that inserts a check instruction after the last weak update
may be unnecessary on some execution paths if the uses are in the branch basic
block while check instructions are generated at the control-flow merge points.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.



76 o J.Linetal.

sl: r=%p /* 1d.s flag */ sl: 1d.sr=[p]
s2: f =% /* 1d.s flag */ s2: 1d.s f=1[r]
s3: if (cond) { s3: if (cond) {
s4: if (mis-speculation for *p) { /* chk.s flag */ [|s3: chk.s r, recoveryl
sS: r=%*p s4:  nextl:
s6: f =%*r sS: chk.s f, recovery2
} s6: .=f
s7: if (mis-speculation for *r) { /* chk.s flag */ [|s7: next2:
s8: f=*r }
}
S9: .=f s8:  recoveryl:
} s9: Idr = [p]
s10: 1d f=r]
sl1: br nextl
s12: recovery2:
s13: 1d f=[r]
sl4: br next2
(a) speculative version represented by if-block based (b) final output
recovery code after partial ready-code motion

Fig. 8. Recovery code generation for multilevel control speculation using partial ready-code
motion.

A .=
*q=... A
/\ (may modify*p)
N c

(may modify *p)

\ . o exp

=" D check
(a) A check instruction is generated after (b) A check- instruction is generated at
the weak update location the use location

Fig. 9. Examples of effective placement of check instructions in speculative PRE.

Those extraneous check instructions may degrade performance. In this section,
we examine the issues regarding how check instructions should be placed in
order to minimize the execution of unnecessary check instructions.

There are two obvious locations to place a check instruction during the specu-
lative PRE optimization: one is at the use location of the speculative redundant
expression. The other is after the last weak update but before the use of the spec-
ulative load as we already mentioned. Both schemes can introduce unnecessary
check instructions.

Consider the example in Figure 9a. The occurrence of expression *p in basic
block D is assumed to be speculatively redundant to *p in basic block C, and
nonspeculatively redundant to *p in basic block B. In this case, it is better to
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x¢— (redundant) chk 7 (redundant)

! !
N\ .

Xé— X

(a) stores to x (b) chk instruction to register r

Fig. 10. Store redundancy versus check instruction redundancy.

generate a check instruction after the weak update *g in basic block C than a
check instruction at the use location in basic block D. This is because the check
instruction is unnecessary if the program executes along the path A — B — D.

The example in Figure 9b shows a different situation. It is better to generate
a check instruction at the use location because a check instruction generated
after the weak update *q will be unnecessary if the path A— B is executed. It
is difficult to determine which check instruction placement scheme is superior,
because it depends on the structure of the application program.

5.1 Check Placement Optimization

Let us first consider the scheme that places check instructions after the last
weak update point. We can eliminate unnecessary check instructions under the
framework of partial store redundancy elimination (PSRE). A similar algorithm
based on partial load redundancy elimination (PLRE) can be developed if check
instructions are inserted at the use location. It is recognized that PLRE is a
dual framework to PSRE and, hence, we will describe only the PSRE approach
here. In order to simplify our discussion, we model if-block-based recovery code
in the form “if (r is invalid) {...}” as chk r.

We perform PSRE using the static single use (SSU) form [Lo et al. 1998].!
A store of the form x<r is fully (partially) redundant if the store is fully (par-
tially) anticipated. A store is anticipated if the store is never used before it is
redefined, or reaches an exit of the block. As shown in Figure 10a, the first
occurrence of the store is anticipated and thus it is a redundant store. Simi-
larly, a check instruction in the form of chk r is fully (partially) redundant if the
check instruction is fully (partially) anticipated. Thus, given two occurrences
of a check instruction chk r, if there is no intervening use of the register r, the
earlier check instruction is redundant as shown in Figure 10b. The anticipa-
tion of a check instruction is killed when the register r is used. The movement
of a check instruction during the code motion phase is blocked by a use or a
definition of the register r.

In our redundant check instructions elimination, a check instruction corre-
sponds to a store, and a use of register r corresponds to a load. The reader is
referred to Lo et al. [1998] for a full discussion of SSUPRE.

IThe SSU form is adopted in Intel’s ORC compiler [Ju et al 2001], which is the basis of our approach.
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o =%p sl: r="%p sl: r1="*pi
*qQ=... s2 ...=r s2: ...=r1
(may modify *p) $3 %q=... 3 *qi=...
s4: if (ris invalid) { /*chk flag */ s4: chkrz [h]
s10: r=%*p
} s9: A (h,h)«h
/ $5: *w= . o ¥
*w=. s6: if (ris invalid) { s5: Fwi=... s8 ...=n
(may modify *p) /*chK flag */ s6: chkrs
= sll: r="*p sT: ...=13
}

(a) source program (c) after A insertion, where if-

(b) after check generation statement recovery code is modeled as
chk rin check redundancy elimination

: sl: ri=%*pi r="p1
N s2t ...=n T
s3: *qi= redundant s3: *qui=... *q=
s4: chkr2 [h7]
re
9 A (h', 1) b S
= if (ris invalid) {
/ \ if (ris invalid) { /% chk flag */
/* chk flag */ r=%*p
§5 Fw=... s8 ..=p s5: *wi=... s9: chkn r="*p }
s6: chkrs s6: chkrs s8 ...=n ) =
s7: ...=13 s7: .= L.=T
(e) after codemotion (f) final output

(d) after renaming

Fig. 11. A running example to show the effect of check placement optimization (% is the hypothet-
ical temporary for chk r).

5.2 The A-Insertion Step

The SSU form we use here is a dual of SSA form. Just like the ¢ operator is
regarded as a definition of the corresponding variable and always defines a new
version, the A operator is regarded as a use of variable and always establishes
(uses) a new version. The ¢ insertion occurs at a merge point while the A inser-
tion occurs at a split point. The purpose of A insertion is to expose the potential
insertion points for the check instruction being optimized. There are two situ-
ations that cause A’s to be placed. The first situation is when we encounter a
check instruction, we insert a A-function at its iterated postdominance frontiers
[Lo et al. 1998]. The second situation is when a use or a definition of register r
reaches a split point. Since a check instruction can be killed by a use of register
r, this means A’s have to be placed at the iterated postdominance frontier of
each use or definition of register r.

Consider the example code in Figure 11a. Figure 11b is the result of the
program after one if-block-based check is placed at the point of the weak update
at s6 for the use of the expression *p in s7, and another check is generated at
s3 for the use of *p in s8 In order to eliminate the check effectively, the if-
block-based recovery code is modeled as a check instruction in the form of chk
r as shown in Figure 11c at the A insertion phase in7 the check placement
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optimization. In Figure 11c, a A-function at the control flow split is inserted at
89 because the use of register r in s7 and s8 reaches the split.

5.3 The Rename Step

The purpose of the Rename step is to assign SSU versions to all of the check
instructions. Each use of register r is assigned a new SSU version. The check
instructions that reach the use will have the same version numbers. Each A-
function is also assigned a new SSU version because we regard each A-function
as a use.

Renaming is performed by conducting a preorder traversal of the postdomi-
nator tree, beginning at the exit points of the program. We maintain a renaming
stack for each check instruction in the program. When we came across a use
or a definition of register r or A, we generate a SSU version and push it onto
the stack. When we come to a check instruction, we assign it the SSU version
currently at the top of its stack, and also push it onto the stack. The operands
of A are assigned the SSU version at the top of its stack if the top is a check or a
A ; otherwise, it is assigned L. The renaming effect is illustrated in Figure 11d.
The occurrence of chk r at s4 is assigned with the same version number as the
one at 9. Thus, it is marked with a redundant flag.

The last step (i.e., CodeMotion step) performs the insertion and the deletion
of check instructions. Any check instructions along the postdominator tree that
are assigned the same SSU versions are redundant, and could be deleted. In
Figure 11d, the first chk r can now be eliminated as shown in Figure 1le. It
also inserts a chk r at statement s9 for the use at s8. The final output is shown
in Figure 11f after the compiler eliminates the corresponding if-block-based
recovery block for the first chk r, and insert one if statement for the newly
generated chk r.

Note that if we use another scheme that places a check instruction at the
location of a use, we could have a similar algorithm based on partial load redun-
dancy elimination (PLRE). It will use a framework based on SSAPRE, since it
is the dual of the SSUPRE algorithm. Because of the lack of space, we will not
describe the scheme here.

6. PERFORMANCE MEASUREMENTS

We implemented our new check instruction and recovery code generation algo-
rithm for general speculative PRE optimizations in Intel’s ORC compiler ver-
sion 2.0, and tested on the HP zx2000 workstation equipped with an Itanium-2
900MHz processor and 2 GB of memory. Ten CPU2000 programs are used in this
measurement. The base versions used for comparison are compiled at optimiza-
tion level O3. The control speculation is enabled by default in the instruction
scheduling.

Our experiments contain three parts. In the first part, we study the impact
of representing the check instruction and the recovery code as an if-block on
the code generated by the compiler and its run-time performance. In the second
part, we evaluate the performance impact of the recovery code generation with
the multilevel speculation support. In the last part, we study the performance
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Fig. 12. Number of basic blocks and code size increase with the if-block-based recovery code gen-
eration scheme.

Table I. Percentage of Instruction Cache Miss Stalls With the if-block-Based Recovery Code
Scheme

ammp art equake | bzip2 gap mcf parser | twolf | vortex | vpr
1 | 0.3% | 0.01% | 0.05% | 0.04% | 8.6% | 0.02% | 0.4% 9.5% | 0.03% | 3.1%
201 03% | 0.02% | 0.06% | 0.05% | 89% | 0.03% | 0.5% | 10.6% | 0.04% | 3.3%

%The percentage of instruction cache miss stalls in the total CPU cycles in base version.
bThe percentage of instruction cache miss stalls in the total CPU cycles after recovery code generation.

impact of redundant check elimination. The performance data is collected using
the Pfmon tool [Pfmon 2003].

6.1 Impact of Recovery Code Generation

Our recovery code generation algorithm is quite effective in practice. We show
the increase in the number of basic blocks and the code size of the ten bench-
marks from the speculative PRE optimization in Figure 12. We collected the
number of basic blocks at the compilation time and the code size is measured
using the size of text segments. The inserted /d.c and/or chk.a instructions
and respective recovery blocks contribute only slightly to the static code size.
Note that since our general speculative optimizations can eliminate speculative
redundant expressions, it would offset the code increase from the check instruc-
tions and their recovery blocks. As can be seen in Figure 12, the impact on code
size is marginal except for twolf. We also collected the execution stall cycles
because of instruction cache misses at runtime as shown in Table I. We observe
that the impact from the increase of instruction cache misses is insignificant for
most programs, except for twolf. Twolf has a relatively high instruction cache
miss penalty to start with. Our recovery code generation makes it worse. How-
ever, the benefit from data speculation optimization in twolf still outweighs the
performance loss from increased instruction cache misses.

Figure 13 shows performance comparison of recovery code generation in spec-
ulative PRE using the assignment representation, the improved assignment
representation and the if-block representation. The main difference between
the assignment-based scheme as mentioned in Section 3.2 and the improved
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ammp art equake bzip2 gap mcf parser twolf vortex vpr

M cpu cycles(assignment based) W cpu cycles (improved assignment based)
Ocpu cycles(if-block based) O D-cache stalls(assignment based)
W D-cache stalls(improved assignment based) @ D-cache stalls(if-block based)
Ml loads retired(assignment based) Oloads retired(improved assignment based)
M loads retired(if-block based)

Fig. 13. Overall performance comparison in speculative PRE using assignment based scheme and
the if-block based scheme, where D-cache stalls are stalls caused by data-load latencies and other
memory system overhead.

assignment-based scheme is that we spent much effort to modify later anal-
ysis and optimization phases to minimize the negative impact from the as-
signment statements generated from the check instructions. For example, we
used some extra flags on these special assignment statements so that the later
data flow analysis can ignore this kind of special definitions. Otherwise, it may
lead to some unexpected renaming. We will illustrate the details in Section 7.
Overall, Figure 13 shows that the if-block-based outperforms assignment-based
schemes. The improvement comes from better optimizations in later phases. For
the assignment-based approach, we have to help the compiler to recognize the
speculative code. For some benchmarks, such as parser and bzip2, the perfor-
mance difference is rather small. This is because the opportunity for data spec-
ulation in these two benchmarks is low. Also, despite our numerous efforts in
minimizing the negative impact of assignment statements introduced by check
instructions, the improvement in performance with the improved assignment-
based is still lower than the if-block-based scheme. However, we should not
overlook the key contribution of the if-block representation that avoids the te-
dious performance tuning required in later analysis and optimization phases
to overcome the inadequacy of the assignment based representation of check
instructions.

6.2 Performance Comparison with Single- and Multilevel Data Speculation

Figure 14 shows the performance difference in speculative PRE with single- and
multilevel speculation support. We can observe some performance difference for
benchmarks ammp, equake, and gap when multilevel data speculation is en-
abled. Overall, the impact on performance is not substantial. Consider Equake,
for example. Many intervening stores exist between multiple redundant multi-
level memory loads. Since multilevel memory references here are of the pointer
type and the type-based alias analysis assumes that aliases could only occur
among memory references of the same type, hence, the possible aliasing caused
by intervening stores can be ignored. However, multilevel speculation opportu-
nities can still be applied even when the type-based alias analysis is enabled.
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Fig. 14. Performance comparison using if-block-based recovery code generation between single-
and multilevel data speculation support, where the base version used for comparison is compiled
with —03.
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Fig. 15. Performance comparison using if-block-based recovery code generation between single-
and multilevel data speculation support, where the base version used for comparison is compiled
with —O3 and type-based alias analysis.

In the code segment shown in Figure 16a, the types of expression w/colj[1],
A[Anext], and A[Anext][0] are different, so the compiler could assume that there
is no alias existed among expressions w/colJ[0], A[Anext], and A[Anext/[1]. We
can see that expressions A/Anext]/ and A[Anext][1] can be promoted to registers
simply using type-based alias analysis. Nevertheless, the opportunity of data
speculation can still be applied to those pointer references of the same type.
For example, the expression A/Anext][1][1] cannot be promoted to a register,
because it is of the same type as the store expression w/colj[0]. In Figure 15, we
can see that both single- and multilevel speculation increase performance for
some benchmarks, even when type-based alias analysis is enabled.

Figure 16b shows another example that the type-based alias analysis would
fail when the intervening stores have the same type as the multilevel mem-
ory loads or computation expressions. In Figure 16b, the expression Src.rake,
Sre.strike and Src.dip are of the same type as the expressions *u and *v. There-
fore, with single-level data speculation, our compiler can speculatively promote
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for (i = 0; i < nodes; it+) { *u = (cos(Src.rake) * sin(Src.strike) -
- sin(Src.rake) * cos(Src.strike) * cos(Src.dip));
while (Anext < Alast) { *v = (cos(Src.rake) * cos(Src.strike) +
col = Acol[Anext]; sin(Src.rake) * sin(Src.strike) * cos(Src.dip));
sumO0 += A [Anext] [0] [0] *... *w = sin(Src.rake) * sin(Src.dip);

suml+= A [Anext][1][1] *...
sum2+= A [Anext] [2][2] *...
w([col][0] += A [Anext] [0] [01*v[i] [0] + ...
wlcol][1] += A [Anext] [1][1]*Vv[i][1] + ...
wlcol][2] += A [Anext] [2] [2]*v[i] [2] + ...
Anext++;
}

§

1
s
(a) Multilevel speculation for multiple level (b) Multilevel speculation for computation
memory loads expressions including intrinsic procedure call such as
sin and cos

Fig. 16. Two examples of multilevel speculation opportunities in benchmark Equake.

expressions Src.rake, Src.strike, and Src.dip into registers. With multilevel
speculative PRE, our compiler can further speculatively promote the values
of expressions sin(Src.rake), sin(Src.strike), cos(Src.rake), cos(Src.strike) and
cos(Sre.dip) to registers. This would effectively eliminate six expensive func-
tion calls. We think that such performance opportunity may exist in some other
important applications. Finally, it should be noted that the type-based alias
analysis is not always safe to be applied to applications. In the future, we will
further investigate the impact of multilevel speculation on the recovery code
generation using more application programs.

6.3 Performance Impact of Recovery Code Redundancy Elimination

Redundant recovery code elimination could improve the performance of spec-
ulative optimizations. The decrease of check instructions can reduce the exe-
cution time of those unnecessary check instructions. More importantly, since
the Advance Load Address Table (ALAT) on Itanium uses partial address
for address matching, those unnecessary check instructions may lead to mis-
speculations. In our framework, we apply the redundant recovery code elimina-
tion for if-block-based scheme with single- and multilevel speculation support.

Figure 17 shows the decrease in the number of check instructions at compi-
lation time after redundant check elimination is applied to the recovery code
generation algorithm with single- speculation and multilevel speculation sup-
port. We can see that the redundant check elimination can reduce some check
instructions for the benchmarks. For benchmarks equake, bzip2, and mcf, the
opportunities for redundant check elimination under multilevel speculation are
not as good as other programs.

In Figure 18, we measure the actual performance impact by redundant check
elimination. For benchmarks ammp, art, and gap, multilevel speculation can
benefit more from redundant check elimination. The reason is that redundant
check elimination can reduce more chk.a instructions (instead of Id.c instruc-
tions) with multilevel speculation support. The overhead of chk.a instruction
is much higher than that of Id.c instruction. We also show the decrease in the
mis-speculations. Overall, the mis-speculation ratio for these ten benchmarks is
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Fig. 18. Performance impact of redundant check instructions elimination under if-block-based
recovery code generation with single- and multilevel data speculation support.

very low (below 1%). Therefore, the decrease in mis-speculation is insignificant
for the overall performance.

7. RELATED WORK

Most of the recovery code generation schemes proposed so far only deal with
specific optimizations. If the expression *p and *g are potential aliases with a
verylow probability, the load instruction of one expression can be speculatively
moved across the store instruction of another expression. A chk.a instruction
is inserted at its original load location to check for possible mis-speculation at
runtime. The check instruction will jump to a recovery block if a mis-speculation
does occur.

To facilitate correct code scheduling, a dependence edge is added from the
ld.a instruction to the added chk.a instruction. The dependence edge is shown
as a dotted edge in Figure 19¢c. This dependence ensures that the chk.a in-
struction is always scheduled after the /d.a instruction. A dependence edge
from chk.a to st [r] and another from st [q] to chk.a are also added to enforce
correct code scheduling. Since the instruction add r3 = r1,r2 only depends on
ld.ar1 = [p], it can be speculatively moved across st [¢/, as shown in Figure 19d.
During the recovery code generation phase, the compiler will place the original
load instruction, i.e., Idr1l = [p] and all of the instructions between Id.a and
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*q=... s2: Idarl = [ph. s2: Id.arl =[p]
...=*ptb sl: st[ql=... N s3: add r3=rl, 12
*r= Q sl: stlq]=..7> ) sl: st[ql=...
s2: Idrl=[p] ) /‘ s2”: chk.a rl, recovery
2" chkarl <z s st[r]=...
s3: add r3=rl,12 \\\ label:
s3: add r3=rl, 12\
s4: st[r]=... /‘ recovery:
s4: str]= ..{,,/ Idrl = [p]
addr3=rl, 12
br label
(a)original program | (b) the corresponding DAG (c) the updated DAG during data (d) output of the instruction
before instruction scheduling speculation(the dashed edges scheduling using data speculation
represented the newly added edges
after the chk.a instruction is inserted)

Fig.19. Example of the JNMW recovery code generation algorithm used for instruction scheduling.

chk.a that are flow dependent on ld.a instruction, i.e., add r3 =r1,r2, into the
recovery block (see Figure 19d).

This algorithm works well for code scheduling, but not suitable for more
general speculative optimizations, such as the speculative partial redundancy
elimination optimization. Consider the example in Figure 20a, and assuming
g and *p are unlikely to be aliases, the compiler can speculatively replace the
expression *p+b (s4) by a+b, (s1) as shown in Figure 20c. Using the JNMW algo-
rithm, the later recovery code generation phase may not locate the instruction
on the dependence chain between the /d.a and the chk.a, because it has been
speculatively eliminated. This can be shown with the output in Figure 20(b),
where the instruction *p + b (i.e., add r3 = r4,r2 in Figure 20c) is eliminated.
Keeping such eliminated instructions on the dependence chains in the IR can
significantly complicate later optimizations because they must be handled dif-
ferently from regular instructions.

Another difficulty with the JNMW algorithm is that it implicitly assumes
there is only one speculative load (Id.a) instruction for each chk.a. This as-
sumption is no longer true for speculative PRE optimizations. For specu-
lative PRE, one chk.a instruction may correspond to multiple Id.a instruc-
tions, so multiple-flow dependence chains should exist for a single chk.a
instruction.

This can be shown with the example in Figure 20d. We can speculatively
eliminate *p (in s6) and use the value loaded in s1 or s3. A Ild.a instruction is
generated for s1 and s3, respectively (as shown in Figure 20e). The chk.a in-
struction in s6 corresponds to multiple /d.a instructions (at s1 and s3). If the
compiler selects the flow-dependence chain, based on the /d.a instruction in s3,
according to the JNMW algorithm, the statement s4, i.e., add r2 =r1, 1, would
be included in the recovery block. However, this instruction is nonspeculative,
and should not be included in the recovery code. The correct recovery block
should be as shown in Figure 20g. This example shows the need to distinguish
nonspeculative instructions from speculative instructions in IR for correct re-
covery code generation. All later optimization phases must be aware of the
existence of possible recovery blocks and check instructions.
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sl: ...=atb sl: Id rl = [&a] sl: Id rl = [&a]
s2: *P=a s2: 1d r2 = [&Db] s2: 1d r2 = [&D]
s3: *q = ... s3: add r3 =rl, 2 s3: addr3 =rl,r2
s4: ... = *pthb s4: st [p] =rl s4: st [p] =rl
s5: 1d.a r4 = [p] s5: 1d.a r4 = [p]
s6: st [q] = ... s6: st [q] = ...
s7: chk.a r4, recovery s7: chk.a r4, recovery
label: label:
recovery: /* incorrect */ recovery: /* correct */
1d r4 = [p] 1d r4 = [p]
br label add r3 = rd, r2
/* missing in the speculative chain*/
br label
(a)original program (b) incorrect recovery code for (¢) correct recovery code for global value
global value numbering based numbering based speculative redundancy
speculative redundancy elimination
sl: t=*p+2 s3: t =*p+1 sl:1d.arl= [p] s3: ld.arl= [p]
s2:add r2 =rl,2 s4:add r2 =rl,1
s5: st [q]= ...
s6: chk.a rl, recovery
label:

(d) original program (e) output after speculative redundancy elimination

recovery: /*incorrect */ recovery: /*correct */
Id arl = [p] Idarl =[p]
addr2 =rl, 1 br label
br label
(f) incorrect recovery code for (g) correct recovery code for speculative
speculative redundancy elimination redundancy elimination

Fig. 20. Examples to show that the scheme proposed in Ju et al. [2000] is insufficient to handle
general speculative optimizations. (a), (b), and (¢c) show one situation where some instructions could
be missing in the recovery block; (d), (e), and (f) show another situation where some instructions
could be mistakenly added into the recovery block.

In Lin et al. [2003, 2004], a check instruction is represented implicitly
as anassignment statement and its recovery block as its associated flow-
dependence chain. Consider a simple example in Figure la. The second oc-
currence of expression *p in s3 can be regarded as speculatively redundant to
the first *p in s1. Therefore, we can use Id.a for the first load of *p, and use
the check instruction for the second *p. In Figure 5d, an assignment statement
shown asrg = *p with a check flag is used to represent chk.a or ld.c, respectively.
The recovery block is implicitly assumed to have the original load instruction
for *p in s3. In later code scheduling, if some instructions can be speculatively
moved up, as the example in Figure 19, the flow dependence chain between Id.a
and the check instruction implicitly represents the remaining code inside the
recovery block. However, as shown in Figure 5d, the live range of the register r
has been changed and the first definition of 7 in s1 can no longer reach the last
use of rin s3. The version number of r is changed in s4 from r1 to r2 because
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the check instruction is represented as an assignment statement. This, in some
sense, violates the semantics of the check instruction that requires both the
speculative load and the corresponding check instruction to use the same reg-
ister. In addition, this implicit representation could significantly inhibit later
optimizations, such as code scheduling, for instructions related to the specu-
lative load. For example, it no longer allows the instruction r + 10 in s3 to be
speculatively hoisted across the store instruction %y in s2. Existing check and re-
covery code generation approaches are thus inadequate for general speculative
optimizations.

8. CONCLUSIONS

In this paper, we propose a compiler framework to generate check instructions
and recovery code for general speculative optimizations. The contributions of
this paper are as follows: First, we propose a simple if-block representation for
the check instructions and their corresponding recovery blocks to support both
control and data speculation. It allows speculative recovery code introduced
early on during program optimizations to be seamlessly integrated with subse-
quent optimizations. We use this framework to generate the recovery code for
speculative PRE-based optimizations that include partial redundancy elimina-
tion, register promotion and strength reduction. We then show that the recov-
ery code generated for speculative PRE can be integrated seamlessly with later
optimizations such as instruction scheduling. This recovery code representa-
tion can also be applied to speculative instruction scheduling. Furthermore,
we study the optimization that eliminates unnecessary check instructions. We
model the unnecessary check elimination as a partial store redundancy elimi-
nation (PSRE) problem and use the static single-use (SSU) form to effectively
solve it. Finally, we show that our proposed framework can support the compiler
to generate recovery code for both single and multilevel speculations. We have
implemented the proposed recovery code generation framework in the Intel’s
ORC compiler.

As for future work, we would like to support more speculative optimiza-
tions, such as value speculation and thread-level speculation, under the same
framework to ensure its generality and to exploit additional performance op-
portunities.
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