
Unified Management of Registers and Cache

Using Liveness and Cache Bypass1

Chi-Hung Chi Hank Dietz

Philips Laboratories
345 Scarborough Road

Briarcliff Manor, NY 10510

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907

Abstract

In current computer memory system hierar-
chy, registers and cache are both used to bridge
the reference delay gap between the fast
processor(s) and the slow main memory. While
registers are managed by the compiler using pro-
gram flow analysis, cache is mainly controlled by
hardware without any program understanding.
Due to the lack of coordination in managing these
two memory structures, significant loss of system
performance results because:

0 Cache space is wasted to hold inaccessible
copies of values in registers.

0 Inaccessible copies of values replace those
accessible ones from cache.

0 Despite the fact that register allocation has
long recognized the benefits of live range
analysis, current cache management has
completely ignored live range information.

In this paper, we propose an unified management
of registers and cache using liveness and cache
bypass. By using a single model to manage these
two memory structures, most redundant copies of
values in cache can be eliminated. Consequently,
bus traffic and memory traffic in data cache are
greatly reduced and cache effectiveness is
improved.

Keywords: cache, register, live range, cache
bypass, unified management.

1. Introduction

In current computer memory system hierar-
chy, registers and cache are both used to bridge
the reference delay gap between the fast
processor(s) and the slow main memory. While
registers are managed by the compiler using pre
gram flow analysis, cache is mainly controlled by
hardware without any program understanding.
Due to the lack of coordination in managing these
two memory structures, significant loss of system
performance results because:

l Cache space is wasted to hold inaccessible
copies of values in registers.

0 Inaccessible copies of values replace those
accessible ones from cache.

l Despite the fact that register allocation has
long recognized the benefits of live range
analysis, current cache management has
completely ignored live range information.

This causes busy redundant memory traffic in
cache and decreases system performance substan-
tially. In load/store VLSI processor designs such
as RISC architecture [Pat851 [HeJ83] [Kat83], this

1. This work WaS completed and the first version of this report was written up before Chi-Hung Chi joined Philips
Laboratories.

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is

given that copying is by pemksion of the Association for Computing Machinery.
To copy otherwise. or to republish, requires a fee and/or specific permission.
0 1989 ACM 0-89791-306-X/89/0006/0344 $1.50

344

problem becomes more serious because of the lim-
ited on-chip cache size and the high off-chip to
on-chip memory access ratio [Hi1831 [AgC87]
[KaM87].

In this paper, we present an unified scheme
for managing registers and cache taking full
advantage of live range analysis. Redundant
memory traffic in data cache due to inaccessible
copies of values are eliminated and cache perfor-
mance is improved. Throughout the whole discus-
sion of the unified management scheme of registers
and cache, a data cache with line size of one is
assumed. This assumption is justified by the fact
that small line size (e.g. one) is always preferred
for data cache [ChD89] [Lee887].

The outline of this paper is as follows. Sec-
tion 2 reviews the general characteristics of regis-
ters and cache. Differences between these two
memory structures from compiler’s view are also
summarized. In Section 3, basic concepts toward
unifying management of registers and cache are
discussed. The proposed unified management
scheme is then proposed in Section 4. Implementa-
tion of this scheme (both hardware and software)
is also discussed in this section. In Section 5, simu-
lation results of memory traffic reduction in data
cache is presented. Finally, this paper concludes
in Section 6.

2. Registers versus Cache

In order to devise a coordinated scheme for
management of registers and cache, it is first
necessary to develop a better understanding of the
differences and similarities between these two
types of buffer memory.

2.1. Registers

2.1.1. Concepts of Registers

Registers, or a “register file”, constitute a
relatively small, fast, local memory residing in an
address -space distinguished
memory. The structure of a
is given in Figure 1.

from that of main
register memory cell

name:

Figure 1. Structure of Register Memory Cell

Since registers are the absolute top of the
memory hierarchy (typically with cache just
below), register access time is the fastest of all
memory systems in a computer and there are typi-
cally fewer memory cells in a register file than
there are cells in any other level of the memory
hierarchy. Each register is usually one word wide,
with a total of perhaps 16 or 32 words in the regis-
ter file.

By placing a value in a register, one can

reap at least four benefits:

[l] The fast access time of values in registers
reduces latency.

[2] A reference to a register typically does not
interfere with references along the path(s) to
main memory, thereby effectively increasing
usable bandwidth to main memory.

[3] Typically, the predictability of register refer-
ences aids in compile-time optimization of
code and simplifies hardware. Optimizations
are aided in that reference times can be
known at compile time; hardware is
simplified in that register references in most
machines cannot cause pipeline bubbles.

[4] Because register names are typically shorter
than memory addresses, referencing values in
registers actually decreases the required
instruction-fetch bandwidth - even though
registers typically cannot hold instructions.

2.1.2. Register Allocation

Register allocation - the mapping of values
in a program to physical registers - is tradition-
ally handled by the compiler. Most “good” regis-
ter allocation schemes are based on one of two
principles:

0 Usage count: the reference frequency of each
value is used as the main criteria for allocat-
ing a register for a value. Values with
higher reference frequencies should have
higher priority to be in registers [Fre74].

a Graph coloring and spilling: a live-range
interference graph is constructed using data
flow or dependence analysis. In this graph,
each node represents a value2 and each arc

2. Instead of using a node for each value, each node
may represent. a variable. This is easier to
implement, but degrades performance by
introducing false dependencies where a variable is

345

linking two nodes represents the fact that
the two values have overlapping lifetimes,
i.e., are simultaneously live. A mapping of
values to registers is found by coloring this
graph with n colors, where n is the number of
registers available (h ence, each color
represents a particular register). Various
heuristics have been proposed for finding an
n-coloring [ChA81] [Cha82] [Cho83] [ChH84];
should the algorithm fail to find an n-
coloring, some values will be placed in
memory (spilled from registers) to simplify
the graph so that an n-coloring can be found.

Both these basic approaches share a number of
characteristics:

l Rather than using the program’s sequencing
of references, a partial order derived from
that sequence is used for allocation.

0 Register allocation is visible to the compiler
and, in some cases, also to the programmer.

0 Binding of value to a name is defined at
compile-time.

. It is understood that defining live range in
terms of values rather than in terms of vari-
ables is beneficial.

0 Conventional registers can only hold data,
not instructions.

2.1.3. Limitations of Registers

The most important limitation of registers, is
that, for most programs, many values cannot
benefit from being kept in registers. Although it is
true that sometimes a value cannot be kept in a
register because the hardware provided too few
registers, even given an infinite number of regis-
ters, a large fraction of the values computed
within any program should not be kept in regis-
ters. To understand why some values should not
be kept in registers, one must understand a little
bit of compiler flow analysis.3

used to hold several different values.
3. The description given here of the ambiguous alias

problem is a gross oversimpliEcation intended only
to give an intuitive introduction to the problem.
This issue is currently one of the richest research
areas within compiler technology; more detailed
discussions of this problem appear in [AllS3],
[Bur84], [BuC66], [AIMS], [Ste86], and [Die87].

Suppose a particular segment of a program
refers to two names, one called o and the other
called p. If one of o and p is a pointer, or one is a
call-by-address argument to this routine and the
other is a variable which was accessible in the
caller’s scope, or both are elements of the same
array (such as a[iJ and ahI), etc., then it is possible
that even though (Y and /3 look like different
names, they refer to the same object. In other
words, changing the value of one might change the
value of the other, i.e., Q and ~9 might be aliases
for the same object.

If compile-time analysis can prove that (Y
and p cannot be aliases for the same object, then
(Y and p can each be assigned to a register and
each can be kept there indefinitely. Instead, if the
compiler can prove that (Y and p are always
aliases for the same object, then Q and /3 are
assigned to share a single register, and again the
object can be kept in a register indefinitely. How-
ever, if the compiler isn’t sure if o and p refer to
the same object, or if Q and p only sometimes refer
to the same object, we say that o and p are ambi-
guously aliased to each other.

At this point, it is useful to point out that
compile-time analysis techniques for determining if
a! and p are aliases for each other are, at best,
complex to implement and easy to confuse. Confu-
sion results in the “safe” assumption that (Y and p
are ambiguously aliased to each other. In addi-
tion, in many cases it is theoretically impossible for
the compiler to determine whether o and /3 are
aliased, in which case the compiler must again
assume that they are ambiguously aliased. A good
example of such a case is determining whether a/i]
and ab] are aliased in code like Figure 2.

read (i, j);
a[i+j/ = a/i] + a/i];

Figure 2: Example of Compile-Time Unsolvable
Aliasing Problem

If the compiler’s best “guess” is that cr and p
are ambiguously aliased, then placing either value
in a register will require “flushing” that register
whenever either (Y or /3 is stored into. This “flush-
ing” is usually needed so often that the cost of
referencing Q and p from registers is actually
greater than the cost of referencing them from
main memory, hence, placing Q and ,6 in registers
would degrade, rather than improve, performance.

346

2.2. Cache

2.2.1. Concepts of Cache

A cache is a small memory holding rapidly
accessible copies of values from main memory.
Rather than having a distinct namespace as regis-
ters do, cache contents are addressed associatively
by main memory addresses. The conceptual struc-
ture of a cache memory cell is shown in Figure 3.

datum address

Figure 3: Cache Memory Cell Structure

Residing just, below registers in the memory hierar-
chy, both access time and number of memory cells
for a cache are between those of registers and
those of main memory. Each cache cell (i.e., cache
line) usually holds between one and 64 words, not
counting the address tag. A typical cache imple-
mented on the processor chip contains 128 to 256
words; a cache implemented using separate logic
can be as large as 64K words, but is more often
between 2k and 8K words.

Of the four benefits listed for placing a value
in a register, however, in general, caches only
insure [l]: a reduction in access latency. Benefit
[2], which is based on the lack of interference
between register and main memory data paths,
does not, hold for a traditional cache, except, in
that other processors in a multiprocessor system
typically would not see interference from cache
references on a particular processor’s cache.

The predictable reference time for a register
reference, benefit [3], is not, echoed in cache refer-
ence because of the concept of a cache miss. Some
would argue that, given a large enough cache, the
probability of having a cache miss can be made
arbitrarily low; however, we believe this misses the
point. One reason we disagree with the very-large
cache argument, is that the access speed of a
memory is related to the size of its address space
(e.g., if one can fit, the cache on the processor chip,
it will probably function much faster than if it is
referenced across several chips). Another reason is
that the cost of implementing an arbitrarily large
cache is also arbitrarily large - it isn’t very cost
effective. In any case, unless the cache is as large
as the entire virtual address space of the machine,

one will occasionally suffer a cache miss, and this
implies that extra hardware/software effort, must,
be made to cope with this situation.

Benefit [4] is based on the reduction of
required instruction-fetch bandwidth due to use of
short, names in referencing values. This cannot be
applied to cache because the register correspon-
dence between short names (register numbers) and
long names (memory addresses) must, be explicitly
established by register Load and Store instructions,
whereas the mapping in a cache is unknown to the
software. In other words, a compiler cannot tell
which cache line of a conventional cache will hold
a copy of a particular value it is referencing -
hence, it, cannot, use the cache line number to
address the value. The desired value might not,
even be in the cache, either because it, has not yet,
been placed there or because placing some other
entry in cache “bumped” the desired entry out of
cache.

2.2.2. Cache Management

Since the invention of cache in 1966 [Lip68],
most, cache management schemes can be charac-
terized as [Smi82] [Smi87]:

Cache is managed purely by hardware.

The reference sequence/pattern of each par-
ticular program is not, considered. Proba-
bilistic or runtime history-based predictions
of future behavior are used. The concept of
live range analysis is completely ignored.

Management of cache is transparent to pro-
grammers and compilers4.

All references are through the cache; if the
required information is not in cache (i.e., a
cache miss), the corresponding line is fetched
into the cache so that the reference may be
made. Of course, this implies that in normal
operation every cache miss will cause a line
from cache to be replaced.

Cache can be used to hold both data and
instructions.

4. There are some exceptions that have explicit cache
control such as IBM 801 [Rad83]. The 801 includes
cache control instructions, but little has been
written describing how they should be used.

341

2.3. Summary of Differences

As noted at the beginning of this paper,
there is no conceptual difference between the func-
tions of registers and cache in the traditional
memory hierarchy. Rather, they are distinguished
by their physical aspects: speed, size, and address-
ing mode (cache is referenced by address and regis-
ter by register name). However, from a compiler
viewpoint, there are two fundamental conceptual
differences between registers and cache:

PI Since caches are accessed associatively by
main memory addresses, ambiguous alias
references - pointer or subscript operations
which result in the same memory address
being referenced by two or more different
names (aliases) - will still reference the.
same item in cache; this is not true of regis-
ters. An aliased value placed in a register
will have to be spilled whenever any of its
possible aliases is stored into; this spilling
makes registers virtually worthless for
aliased values.

[2] Since most computers do not have an “exe-
cute register” instruction, there is no benefit
in placing an instruction in a register.

In summary, registers can be managed more
efficiently at compile-time, but cache is far more
general in its application. The ideal is therefore to
use registers where they are more efficient, and to
use cache only for those tasks which cannot benefit
from register use. To accomplish this, it will be
necessary to slightly modify the cache so that it
may be partially controlled by the compiler - this
simple modification is discussed in the next section.

3. A Unified View of Cache and Registers

In the previous section we have characterized
the differences between registers and cache as pri-
marily differences in the types of items which can
be profitably kept in each. Since register alloca-
tion is a viable compile-time management scheme
and cache has none, this section will attempt to
show that the concepts upon which register alloca-
tion is based are equally applicable to cache.

3.1. Live Range of References in Cache

A major concept in register allocation is that
of liveness. In the literature on caches, one finds
liveness mentioned only as a technique for reduc-
ing overhead in analysis of program traces
[McD88]. It is also tempting to think of liveness of

addresses - rather than liveness of values stored
in them. Instead of using address or name, the
definition of live range of an item to be cached
should be in terms of values - exactly as in regis-
ter allocation:

Definition 1: Live Range of a Value
The live range of a value 21 is defined as the
set of instructions during which the value v
exists and may be referenced. In other
words, it is the D-U chain of v U all instruc-
tions which, on some flow path, may be exe-
cuted after U’S dej and before the last use of
v on that flow path.

However, unlike registers, cache may hold instruc-
tions. For this reason, it is necessary to define the
live range of an instruction:

Definition 2: Live Range of an Instruction
The live range of an instruction a is defined
as the set of instructions, including Q, which
may be executed after the first execution of
o and before the last execution of (Y on some
flow path. Notice that for straight-line code
the live range of an instruction (Y is always
the set {a}, however, if (Y is enclosed in a
loop or multiple-caller subprogram the set
may be greatly enlarged.

Although these definitions are not surprising, they
do have some surprising implications.

Perhaps the most dramatic of these is that a
value which has become dead need not be stored
back to main memory. Hence, suppose that the
compiler is able to determine that a particular
memory read operation of the value v will be the
last use of v. If the value v is cached, even if the
cached value TV does not match the value which is
stored at the corresponding address in main
memory5, the cache cell containing value v need
not be stored back to main memory. The compiler
may simply inform the cache that this was the last
reference to u and hence that the cache line which
held 21 is “empty” at completion of this use of u6.

5. This occurs if a def of v is executed when u is in
cache or when a defof v creates the cache line and
the cache has not yet stored v back to main
memory.

6. In the interest of simplicity, this discussion has
pretended that a cache line holds exactly one value
- this restriction is easily removed, although more
complex bookkeeping is required.

348

The benefit of having such “empty” cache
lines is that instead of the basic line-replace opera-

tion, only a simple placement is required to install a
nezu line dn cache. Of course, this also insures that
no useful item was accidentally flushed from cache
in this process.

The only hardware modification needed to
support application of this new concept is that the
compiler needs to be able to tag references with a
“last reference” bit. This may be accomplished in
many different ways, several of which are briefly
discussed in [ChD89].

3.2. Selective Caching (Cache Bypass)

In register allocation, the compiler com-
pletely determines which register will hold each
value and for how long. However, a conventional
cache does not provide such compile-time control;
a conventional cache simply employs a program-
independent hardware-implemented strategy for
placing each referenced item somewhere in cache
and for choosing the item to be spilled to main
memory if the cache was already full.

It is found that substantial benefit can be
gained by simply using a single bit of control - to
determine whether the current reference should be
placed in cache or if it should instead bypass the
cache [ChD89].

In this paper, we assume that the compiler
at least has the ability to tag each reference as to
whether the reference should be made using the
cache or bypassing the cache. Bypassing the cache
would be done for two separate reasons:

PI

PI

As discussed in [ChD89], some items are not
referenced often enough to be worth keeping
in cache. Due to the expense of loading the
cache with an entire line, as compared to the
cost of reading a single word, it is common
that individual references would run slower
with cache than without it - bypass avoids
this worst-case behavior.

If the benefit from keeping a particular value
in a register is greater than that of keeping
it in cache and a register is available, then
the cache should be bypassed when that
register is loaded or stored. Failure to do
this wastes cache cells by making them hold
values which will not be referenced, as dis-
cussed earlier.

Combining cache bypass with an underlying
hardware-implemented policy provides a reason-

able approximation to the full allocation control
available with registers.

The least recently-used (LRU) scheme for
cache line replacement chooses for replacement
that line in cache which has not been referenced
for the longest period of time [Spi76]. Since it may
become difficult to maintain the LRU stack per se,
an LRU approximation is often implemented as a
one-bit time stamp indicating whether each line
has been referenced since the last time the stamp
was read and reset.

Suppose that a line X is in cache and that
the processor is about to make what is known to
be the last reference to X. In either LRU or an
LRU approximation, the line X would be present in
cache for O(n) time units after the last reference,
where n is the number of lines in a cache associa-

tive set, because it will take that long for X to be
nudged into the least-recently-referenced position.
In effect, if the average cacheable item is refer-
enced r times, then approximately 1/r of the cache
cells will be wasted. Notice that ~1 items would
be a complete waste - something referenced only
once should never be placed in cache. Further
note that, in typical programs, relatively few items
are referenced more than a few times (except
perhaps in some loops).

To avoid this problem, we propose that the
compiler mark the last reference to each item as
such, and that the cache hardware would immedi-
ately interpret this as making the cache cell hold-
ing X “empty” or, alternatively, making it the
least recently used. If the line X was not in cache,
the hardware should simply make the reference to
X using the cache bypass or, alternatively, bringing
the line into cache but immediately marking it as
the least recently used.

If other underlying hardware-implemented
replacement schemes are used, they should be
modified in the same way described above for
LRU. This can be done easily for FIFO, random,
and even Belady’s MIN algorithm [Bel66].

4. The Unified Registers/Cache Management
Model

The previous section outlines the fundamen-
tal concepts for treating cache as a register-like
compiler-managed entity. In this section, the com-
plete strategy for the unified registers/cache
management model is described.

349

First, compiler technology needed for this
unified registers/cache management model is given.
The management scheme of registers and cache
using the unified model is then presented. Finally,
the implementation techniques - both hardware
and semantics - are proposed.

4.1. Compiler Support

The basic compiler technology needed for the
unified registers/cache management model is very
similar to that needed to perform register alloca-
tion, however, there is some complications. The
first complication is that names must be grouped
according to which other names they are ambigu-
ously aliased with, henceforth called an alias set;

4.1.1. Alias Sets

As discussed above, the fundamental flaw in
static analysis of conventional-language programs
is that it is not possible to statically determine, for
all variables, which ones are aliased to which oth-
ers at each point in the program. The alias prob-
lem is simply finding which items can be aliased to
each other. We call this problem the construction
of alias sets.

The basic tools with which alias sets are con-
structed are the familiar algorithms of compiler
flow analysis (including dependence analysis).
These tools have been particularly well-honed in
pursuit of efficient automatic parallelization. The
presentation here is intended merely to provide a
brief overview to the analysis involved in creating
alias sets.

4.1.1.1. Names

The first issue to resolve in grouping names
into alias sets is the basic question of what consti-
tutes a name. Each variable could be considered a
name, however, this is not the most useful
definition. The difficulty is rooted in the fact that
a variable (Y may be an alias for a variable p
within one region of a program, while CY may be an
alias for 6 in another section of the code. In such
a case, considering (Y to be a name used for group-
ing into alias sets, it would be necessary either to
make the alias set containing CY be {@,/3,S} or to
make the alias set for cr be {cY,@} in one region of
code and {a,S} in another. Ideally, names should
be chosen so that each name is a member of an
alias set whose contents are independent of posi-
tion in the program, yet where no names are
included unnecessarily.

The solution to this naming problem is sim-
ply to incorporate control and data flow informa-
tion in the names: however, the mapping from
user variable names into these aliased-object
names is surprisingly complex. For example, if
the user has declared i to be an int variable and p
to be an int * which is initially set to point at i

(e.g., P=(W% h t en references to both i and *p use
the same aliased-object name: user names are
mapped many-to-one into aliased-object names.
This means that if the compiler can detect that
two user names are unambiguously aliased to each
other, these two user names will share a single
aliased-object name. The rule is more precisely
expressed as:

Definition 1: User-Name Merging
The user-created names (Y and p can be
merged into a single aliased-object name
within some region of code ifl the values
associated with the names cv and p are
known to be the same throughout that
region of code.

which also implies that explicitly made copies of
values can all share a single aliased-object name
(i.e., the compiler can perform copy propagation).

On the other hand, in a code sequence like
i=j'; . . . i=k;, the user name i will be mapped into
multiple aliased-object names, one for each
different value stored into i. This rule is best
expressed in terms of D-U chains and U-D
chains [AhS86]:

Definition 2: User-Name Splitting
Let U be the set of uses of (loads from) the
user name (Y. For each use u,eU, let the U-D
chain rooted at ui be called d,.. If, for any i
and i, d,ndJ#@, then let d,=dpd. and delete
dy When no more such merger/ d eletions can
be performed, each of the remaining sets (dJ
can be represented by a separate aliased-
object name.

Notice that values which do not have
programmer-assigned names, such as intermediate
results within an expression, also may be assigned
aliased-object names by the above rules.

4.1.1.2. Formation of Alias Sets

Given the above definitions, it is relatively
easy for a compiler to generate a set of names
appropriate for grouping into alias sets; but what
is an alias set? There are actually several
compile-time distinguishable types of aliases:

350

PI

PI

Pl

141

PI

A name (Y is a true alias of the name ,8 if (Y
is known to always be associated with the
same value that is associated with p.
(Notice that, if this is so, the two names may
be merged by Definition 1 given above.)

A name Q is an intersection alias of the
name /3 if (Y and p are known to share some
elements of their values, however, perhaps
not all elements. For example, if a is a struct
containing members called b and c, then a
and a.b are intersection aliases. Intersection
aliases occur most often in code referring to
arrays.

A name (Y is a sometimes alias of the name
/3 if (Y is known to be a true or intersection
alias for /3 under some circumstances at run-
time, however, (Y is not an alias for /3 under
other circumstances. For example, references
to a[;l and a/5/ are sometimes aliases if i
could be equal to 5.

A name (Y is an ambiguous alias for @ if o
is an intersection alias or sometimes alias for
P, or if the compiler is unable to determine
the relationship between (Y and @.

A name cr is mutually exclusive of p if Q
and p are not related by any of the above
alias types. If, for all /3, g is mutually
exclusive of ,B, then cr is unambiguous.

For the purpose of unified registers/cache manage-
ment, an alias set is a set of names grouped by
“closure” of the ambiguous alias relation. In other
words, given a name n, the alias set for n consists
of n U (all names which are ambiguous aliases of
n) U (all names which are ambiguous aliases of
those names) u Notice that these alias sets
have several useful properties:

Uniqueness
If (Y is a name in alias set S, then cr is in no
other alias set. This assignment is also
independent of the region of code in which CY
is referenced.

Completeness
If (Y is a name, it is a member of some alias
set; if (Y is mutually exclusive of all other
names, then the alias set which contains cr is
a singleton set containing o.

4.2. Strategy for the Unified Model

In this section, the complete strategy for
managing registers and cache using a coordinated

scheme is proposed. The key idea of this scheme is
to try keeping only one copy of information in
either cache or registers. Hence, any inaccessible
copy of information can be eliminated and the
effectiveness of each memory level increases.

Perhaps the best summary is the diagram of
Figure 4. As depicted in Figure 4, the unified
registers/cache management model is fundamen-
tally different from previous proposals in that it
takes full advantage of the conceptual differences
between registers and cache.

From the compiler’s view, memory references
in a program can be classified into three different
types:

l ambiguous data values,

a unambiguous data values, and

. instructions.

To avoid any inaccessible copies of values in the
local memory hardware, any placement of memory
reference values should be done according to the
usability of each memory level.

Registers are very restricted in their usabil-
ity, and the conventional management schemes for
registers such as graph coloring techniques [ChA81]
[Cha82] [Cho83] do quite well in this domain -
unambiguous value references. Here, we propose
that the conventional management techniques be
used, but with three differences:

/ ~/f----j-yf-j 1 gzi;yre
: . r.cl!?ad . i

Register

Allocation

(with cache

bpa4

Cache

Management

......................... E;r

I..:

Figure 4: Unified Registers/Cache Management
Model

[l] When a register will be used for a series of
operations, the loading and storing of the

351

value into a register should bypass the cache.

[2] When a register’s value must be spilled due
to a shortage of registers, it should be spilled
to cache.

[3] When the spilled value is referenced, it is
either reloaded from:

a Cache
In this case, the
dead as soon as
into a register.

l Main Memory

cached copy becomes
the value is reloaded

In this case, the cache is bypassed and
the value is directly referenced from
the main memory.

However, cache, which is normally managed
completely by hardware-implemented schemes,
requires some degree of compiler control in order
to achieve better system performance. Cache will
be used only for register spills (see above), ambigu-
ously named values, and for instructions. Further,
cache will only be used when it may improve per-
formance - rather than being used blindly for
each reference.

The subdivision of references into ambiguous
values, unambiguous values, and instructions is
relatively straightforward compiler technology
[AhS86] [Die87]. H ence, determining which refer-
ences should be handled by register allocation and
which by cache management is a simple matter.
Since register spills should go to cache, however,
there is a natural ordering that register allocation
should precede cache management decisions.

4.3. Semantics for the Unified Model

The following semantics is defined for
register-register operation architecture. However,
they can easily be extended to other types of
architectures with slightly modification.

With the unified registers/cache management
model, there are four different types of load/store
instructions corresponding to the fetching and
storing of values in cache and registers. They are:

l AmLOAD,

l AmSp-STORE,

l UmAniLOAD, and

0 Um4mSTORE.

A cache bypass bit per each memory reference is
also used to indicate if the reference goes through
the cache. A “1” would means “bypass” and a

“0” means “go through the cache”.

The operations of these four load/store
instructions are as follows:

l Am-LOAD
This type of load instructions fetches a
datum into register through cache. That is,
a copy of the datum will appear in cache
after the reference and the cache bypass bit
is set to zero. This instruction is used for
loading ambiguous values.

l AmSp-STORE
This type of store instructions saves a datum
through cache. That is, the datum is placed
in cache and the cache bypass bit is set to
zero. There are two situations which use this
store instruction:

l when an ambiguous value is stored.

0 when an unambiguous value is spilled
from a register.

l UmAmJIOAD
The operation of this instruction is to check
if the datum is cache. If it is in cache, the
datum is loaded into a register and that
datum in cache is then marked as invalid or
empty. If it is not in cache, the datum is
loaded from main memory to cache directly,
bypassing the cache. In both case, the cache
bypass bit is set to one. This type of load
instruction is used for loading unambiguous
values.

l UrnAm-STORE
This type of store instruction saves a datum
directly to main memory, bypassing the
cache. The cache bypass bit is set to one. It
is used for saving unambiguous values into
main memory which are not due to register
spilling.

4.4. Hardware Implementation

With the results of compiler analysis of a
program, the question of ambiguity of references
can easily be answered so as to allow the unified
model to manage registers/cache together. How-
ever, this information must be transmitted to the
cache bypass control logic for each memory refer-
ence in load/store instructions. The information
for each load/store instruction requires only a sin-
gle bit - a 1 means “bypass” and 0 means “go
through the cache.” The natural question is how
does the compiler get this one bit of information
for each reference into the cache bypass control at

runtime?

There are a number of alternative solutions
to this problem and each of these solutions trades
off some resources or capabilities.

The conceptually easiest and most efficient
way to transmit this cache bypass information is
to embed a bit in each instruction for each
memory reference the instruction may cause. For
new machine design, this is fairly convenient;
reserving a control bit to obtain speedups of total
memory access time by factors of 2 or more is vir-
tually always worthwhile. Also, existing machines
with at least one currently unused bit in each
instruction should probably use this implementa-
tion.

Alternatively, the instruction set of the
machine can be expanded to include explicit cache
bypass control instructions. In fact, these instruc-
tions exist for virtually all computers which have
cache. An extreme example of this explicit cache
control is the IBM 801, where individual cache
lines can be explicitly allocated and deallocated;
most systems simply permit the cache to be
enabled/disabled as a whole. Since bypasses may
come in “clumps”, even this crude bypass control
can gain some improvement; however, bypasses do
not always come in clumps. By defining a new
instruction specifically to implement cache bypass
control, one could permit each cache control
instruction to set the pattern of bypass/cache
decisions for the next n references, where 12 is
somewhat less than the machine word length.
Again, some performance would be gained, but the
high frequency of cache bypass control instructions
would limit performance.

While all the above schemes have some
merit, there is another scheme which both permits
a cache control bit to be associated with each
instruction and does not require changes in the
instruction set design or encoding. In current
machine designs, the addressable space is typically
very large and programs rarely use the entire
addressable space of the machine. Thus, it is pos-
sible to trade one address bit (e.g., the most
significant bit of an address) for use as the control
bit for the cache bypass. In fact, this solution is
suggested by Intel in their 80386 programmer’s
reference manual [Int86] as a way to provide a
cache control bit for use in multiprocessor cache
coherency control. Worst case, this effectively
reduces the addressable space by 50%‘. Of course,

7. The actual address space may not be affected
because address mapping mechanisms may be able

it also causes the compiler writer a bit of grief in
that not only must all addresses be correctly
tagged, but the compiler must also be careful
about operations such as pointer arithmetic or
comparisons.

Other methods, such as using a separate
cache controller to explicitly control the cache
(similar to the remote PC idea [Rad83]) are also
possible. However, the overhead and the syn-
chronization cost involved may be too large to be
practical.

5. Simulation Result

To measure the effect of the unified manage-
ment scheme in reducing memory traffic in data
cache, simulation study of the MIPS architecture
to measure ambiguous and unambiguous data
value references was performed. The benchmark
programs were taken from the DARPA MIPS
package, and are widely used as benchmarks of
cache and register performance. Data are given
for these programs:

Bubble - a typical bubble sort program,
executed on a set of 500 random data.

Intmm - a program which performs a
matrix multiplication of two integer
matrices, each of which is 40 by 40.

Puzzle - a compute-bound program from
Forest Basket, which runs with a size of 511.

Queen - a program to solve the 8 queens
problem.

Sieve - a program to calculate the number
of primes between 0 and 8190.

Towers - the standard recursive tower-of-
Hanoi solution, given the problem of moving
18 disks.

The result is summarized in Figure 5. Statically,
about 70 to 80 percent of the load/stored data
references might be marked as unambiguous and
should be bypassed the cache. Runtime measure-
ment showed that about 45 to 75 percent of the
loaded/stored data references are unambiguous.
Hence, memory traffic in data cache might possi-
bly be reduced by about 60 percent by using the
unified memory management scheme.

to circumvent the loss.

353

Figure 5: Percent of Data Cache Reference
Traffic Reduction

8. Conclusion

Registers and cache are not interchangeable,
but are complementary to each other. A machine
with 1000000 registers would not be able to place
all values in registers, because registers cannot
resolve ambiguously aliased references. A machine
with 1000000 words of cache but no registers
could, however, be equally futile in that without
the compile-time management associated with
registers there is no provision for avoiding worst-
case cache scenarios where the machine would
spend more time placing lines in cache and
referencing them there than it would spend per-
forming references directly from main memory
(faster without cache than with it); even discount-
ing that effect, cache access time is nearly always
longer than register access time so using cache
where registers would suffice is not optimal.

Miller found that the ratio of unambiguous
references to ambiguous references, measured stati-
cally, is from 1:l to 3:l [Mi188]. This does suggest
that registers are more important than cache,
however, it does not count instruction references.
Hence, the load placed on each type of memory is
considerable.

Given these surprising realizations, we have
proposed a coordinated registers/cache manage-
ment scheme which can use each hardware struc-
ture for the references for which it is best suited.
This technique is both implementable and familiar
- very closely related to register allocation.

References

[AgC87] Agarwal, A., Chow, P., Horowitz, M.,
Acken, J., Salz, A., Hennessy, J., “On-
Chip Instruction Caches for High Per-
formance Processors,” Proceedings of

[AhS86]

[Al1831

[Al1861

[Be1661

[BUG861

[Bur84]

[ChA81]

[Cha82]

[ChD89]

[ChH84]

the 1987 Stanford Conference on
Advanced Research in VLSI, edited by
Losleben, P., The MIT Press, 1987, pp.
l-24.

Aho, A. V., Sethi, R., Ullman, J.D.,
Compilercl: Principles, Techniques, and
Tools, Addison Wesley, Reading, Mas-
sachusetts, 1986.

Allen, J.R., Dependence hdy8i8 for
Subscripted Variables and it8 Applica-
tion to Program Tran8fOrmatiOn8, Rice
University, Ph.D. Thesis, April 1983.

Allen, F., “The Parallel Translator
Project,” NASA / ICASE Parallel
Language8 and Environment8 Work8hop,
November 1986.

Belady, L.A., “A Study of Replacement
Algorithms for a Virtual-Storage Com-
puter,” IBM System Journal, Volume 5,
1966, pp. 78-101.

Burke, M., Cytron, R., “Interprocedural
Dependence Analysis and Paralleliza-
tion,” Proceeding of the SIGPLAN Sym-
pocrium on Compiler Construction, 1986,
pp. 162-175.

M. Burke, “An Interval Analysis
Approach Toward Interprocedural
Data Flow,” Research Report RC 10640
(#47724), IBM, Yorktown Heights, New
York, July 1984.

Chaitin, G.J., Auslander, MA., Chan-
dra, A.K., Cocke, J., Hopkins, M.E.,
Markstein, P.W., “Register Allocation
Via Coloring,” Computer Languages,
Volume 6, 1981, pp. 47-57.

Chaitin, G.J., “Register Allocation and
Spilling via Graph Coloring,” Proceed-
ings of the ACM SIGPLAN ‘82 Sympo-
sium on Compiler Construction, SIG-
PLAN Notice Volume 17, Number 6,
June 1982, pp. 201-207.

Chi, C.H., Dietz, H., “Improving Cache
Performance by Selective Cache
Bypass,” Proceeding of the 1988 Hawaii
International Conference on System8
Sciences, January 1989, pp. 256-265.

Chow, F., Hennessy, J., “Register Allo-
cation by Priority-based Coloring,”
Proceeding8 of the ACM SIGPLAN ‘84
Symposium on Compiler Construction,

354

[Cho83]

[Die871

[Fre74]

[He 5831

[Hi1831

[Int86]

[KaM87]

[Kat83]

[Lee871

[Lip681

/McD88]

SIGPLAN Notice Volume 19, Number
6, June 1984, pp. 222-232.

Chow, F.C., “A Portable Machine-
Independent Global Optimizer-Design
and Measurement,” Technical Note no.
83-254, Computer Systems Laboratory,
Stanford University, December 1983.

Dietz, H.G., “The Refined-Language
Approach to Compiling for Parallel
Supercomputers,” Ph.D. Thesis,
Polytechnic University, June 1987.

Freiburghouse, R.A., “Register Alloca-
tion Via Usage Courts,” Communica-
tions of the ACM, Volume 17, Number
11, November 1974, pp. 638-642.

Hennessy, J., Jouppi, N., Baskett, F.,
Gill, J., “MIPS: A VLSI Processor
Architecture,” Technical Report No.
229, Computer Systems Laboratory,
Stanford University, June 1983.

Hill, M.D., “Evaluation of On-Chip
Cache,” M.S. Thesis, University of Cal-
ifornia, Berkeley, December, 1983.

Intel Corporation, 80386 programmer’s
reference manual, 1986, pp. 11-6.

Kadota, H., Miyake, J., Okabayashi, I.,
Maeda, T., Okamota, T., Nakajima,
M., Kagawa, K., “A 32-bit CMOS
Microprocessor with On-Chip Cache
and TLB,” IEEE Journal of Solid-State
Circuits, Volume SC-32, Number 5,
October 1987, pp. 800-807.

Katevenis, M.H., “Reduced Instruction
Set Computer Architectures for VLSI,”
Ph.D Thesis, Department of Electrical
and Computer Science, University of
California, Berkeley, 1983.

Lee, R.L., “The Effectiveness of Caches
and Data Prefetch Buffers in Large-
Scale Shared Memory Multiprocessors,”
Ph.D Thesis, University of Illinois at
Urbana-Champaign, May 1987.

Liptay, J., “Structural Aspects of the
System/360 Model 85: Part II: The
Cache,” IBM Systems Journal, 1968, pp.
15-21.

McNiven, G.D., Davidson, E.S.,
“Analysis of Memory Referencing
Behavior for Design of Local
Memories,” Proc. of the 15th Annual

WilSS]

[Pat851

[Rad83]

[Smi82]

[Smi87]

[Spi76]

[Ste86]

Int’l. Symposium on Computer Architec-
ture, June 1988, pp. 56-63.

Miller, B.P., “The Frequency of
Dynamic Pointer References in “C”
Programs,” Computer Sciences Techni-
cal Report #759, University of Wiscon-
sin, Madison, March 1988.

Patterson, D.A., “Reduced Instruction
Set Computers,” Communications of the,
ACM, Volume 28, Number 1, January
1985, pp. 8-21.

Radin, G., “The 801 Minicomputer,”
IBM Journal of Research and Dewelop-
ment, May 1983, pp. 237-246.

Smith, A.J., “Cache Memories,” Com-
puting Surveys, Volume 14, Number 3,
September, 1982, pp. 473-530.

Smith, A.J., “Cache Memory Design:
An Evolving Art,” IEEE Spectrum,
December 1987, pp. 40-44.

Spirn, J., “Distance String Models for
Program Behavior,” IEEE Computer,
November, 1976, pp. 14-20.

Stein, K., “Refined C Compiler Status
Report”, Internal Report, Stevens Insti-
tute of Technology, 1986.

355

