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Abstract. Line Associative Registers (LARs) are the basis for a new
class of processor architectures in which memory accesses are minimized
by explicitly managing wide lines of instructions and data in processor
registers. The design of LARs has significant commonality with a num-
ber of existing technologies which have been more or less widely adopted,
however, we firmly believe that LARs-based design, which will employ a
highly unusual execution model discussed in the remainder of this paper,
has ever increasing potential for performance gains over conventional de-
signs utilizing hierarchies of caches and registers. In order to effectively
test and utilize this new design, suitable development tools must be writ-
ten. This paper attempts to describe the implications of a LARs-based
architecture for compiler writers, and demonstrate that the benefits of
such a design can be harnessed with the use of conventional program-
ming languages. At this time, a HDL verification model implementing a
simple LARs-based architecture has been completed, and progress has
begun on developing a set of software development tools based on the
LLVM compiler infrastructure is underway.

Introduction

Line Associative Registers (LARs) are the basis for a new class of processor
architectures in which memory accesses are minimized by explicitly managing
wide lines of instructions and data in processor registers. This paper provides
an overview of the compiler target model and code generation issues associated
with this new class of architecture.

Line Associative Registers fill the role of both registers and caches in a tradi-
tional memory hierarchy, bringing many of the advantages of each while avoiding
their more egregious faults. This work descends from a previous project, CRegs,
which implemented a subset of the design features, and the rise of SWAR, (SIMD
Within A Register) designs. The LARs design has evolved chiefly to address the
ever increasing rift between the speed of CPUs and the main memory that feeds
them.

Each individual LAR consists of a many word line for data, as well as a source
address, an offset, a type tag, and a dirty bit. The source address and dirty bit
function as one would expect in a typical cache. The type tag is set on load,



and indicates the arithmetic type of the data. Because altered data is marked
dirty, there is no need for an explicit store mechanism, and in fact all stores are
conducted lazily as memory cycles become available. The data in the lines can
be addressed as a single scalar value, pointed to by the offset, or as a vector
for SWAR operations. In either case, the type fields are used to handle type
conversions as an implicit part of arithmetic instructions, casting the output
value to the type of the destination LAR.

This architectural design gives rise to a number of significant advantages over
a traditional cache and register hierarchy. Perhaps the most important feature of
the deign is that, thanks to the tag field, LARs are able to automatically resolve
ambiguous aliases, allowing values which could not be kept in classical registers
to remain at the top of the memory hierarchy. It is also extremely important
that LARs are entirely statically managed; unlike a cache, a compiler can make
decisions about allocation, which allows for both more optimal utilization and
more consistent timing than could be obtained from a similarly sized set of
registers and cache memory. Enabling the compiler to statically manage the
memory hierarchy is not a novel concept [1], however, statically managed LARs
enable greater benefits that simple prefetching and cache hinting.

Because instructions are executed from LARs, the architecture presents an
extremely unusual execution model. Chiefly, the model is novel in that instruc-
tion memory does not appear as a static linear space, but rather a sequence of
interlinked blocks. In exchange for this violation of convention, which does in-
validate many of the assumptions made when targeting classical Von Neumann
or Harvard architectures, instructions can be stored and fetched in compressed
bocks, further reducing memory traffic. This behavior also makes code replica-
tion extremely inexpensive, as repeated executions of the same code incur no
additional fetches.

The current effort to implement a toolchain for this design is based on re-
targeting the LLVM compiler infrastructure to support a LAR-based design. The
majority of the features are to be implemented within the infrastructure, how-
ever, explicit handling of instruction fetches is beyond the flexibility of LLVM,
and will therefore be handled by a custom optimizing assembler.

Rationale

Currently, most architectures attempt to hide this increasing disparity with com-
plex multilevel caches using complex dynamic replacement policies. While in the
past such a cache hierarchy has been reasonably successful in hiding memory la-
tency, such designs incur a number of ever more serious problems as the disparity
between CPU speed and memory latency grows. In particular, dynamic mecha-
nisms used to manages caches create extremely variable memory access latency,
which impedes efficient code scheduling, while making inefficient use of the large
portion of modern chips devoted to on-board cache memory, and the replace-
ment mechanisms themselves. The design of LARs has been chiefly motivated
by this observation that the classical Von Neumann execution model is ill-suited



to a world where random memory access is so exorbitantly expensive. While
a LARs-based design breaks many of the assumptions found in conventional
Von Neumann or Harvard style load-store architectures, it closely resembles the
designs of early Von Neumann machines [2], where memory accesses had to be
scheduled around delay lines, mechanically rotating drums, or other devices with
non-constant access time, perhaps more so than any other current architecture.

History

Research into LARs began with the master’s thesis of Krishna Melarkode [3], in
2004, and has since developed in scope and complexity, to include a hardware
verification model, software development toolchain, and a considerable amount
of theoretical work into the unexpectedly complex implications of such a design.
It is worthwhile to take a moment to directly consider the two technologies
which inspired the LARs design; CRegs, which implemented a subset of the
design features, and the SWAR, (SIMD Within A Register) designs. It is also
noteworthy that there are a number of developmental and technological parallels
between LARs and EPIC/VLIW [4] designs. However, we we firmly believe the
LARs solution is more general and elegant than it’s VLIW cousins, in that it
completely removes many of the memory hierarchy problems that VLIW designs
merely help to hide. Also like VLIW, LARs-based designs require considerable
intervention by the software toolchain to package code into suitable parallel
blocks.

SWAR In the 1990s, a variety of architectural features for operating on mul-
tiple data objects within a single machine word, collectively known as SWAR
(SIMD Within A Register) technologies, were added to a number of popular
architectures. These designs included Intel’s MMX [10, 11] and AMD’s 3DNow!
[12] for x86, and a number of earlier extensions for PA-RISC [7-9]. These changes
have been met with widespread adoption, and can be found in almost all mod-
ern architectures. Many compilers now default to using SWAR operations where
possible, for example, TA32 GCC defaults to SSE for floating point arithmetic.
This success has come despite the fact that they significantly alter the program-
ming model, because of the substantial performance gains afforded by utilizing
SWAR technology. While the name does not immediately suggest it, these gains
come chiefly from relief from small random accesses to memory, by grouping
collections of similar small operations into single sequential reads [5]. In order to
ease adoption of SWAR, many of the implementations provide both parallel and
scalar instructions. The oxymoronic scalar SWAR instructions simply ignore all
but a single field — the one in the lowest bitfield in the word.

Later developments in SWAR technology have focused on extending the size
and variety of operations which can be performed in a single operation. Early
implementations supported only small integers, enabled by simply selectively
cutting the carry chain in the existing integer ALU. Later designs have expanded
the variety of supported data types, such as packing two 32-bit floats into a single



64-bit operation in 3DNow![12], and extending the path widths to 128 bits in
AltiVec and SSE. This expansion continues even today. For example Intel’s now
defunct Larrabee was slated to extend data path width to 512 bits [13].

CRegs Given that ever wider registers and datapaths, and SWAR-like pro-
cessing of data within them, are clearly the way of the immediate future, the
question becomes what most limits performance of very wide SWAR? We sug-
gest the answer is the same one that inspired the invention of CRegs (Cache
Registers) [15,16] in the late 1980s.

Given enough registers, the compiler can ensure that nearly every object can
be accessed from a register when it is needed. However, this is not true of am-
biguously aliased objects. For example, if a[i] is loaded into one register and a[j]
into another, should a change of the value in the register holding a[i] also change
the value in the register holding a[j]? If a[i] and a[j] are ambiguously aliased, the
compiler can’t tell. Thus, the compiler is forced to generate code that flushes
the new value of afi] to memory and then re-loads the value of a[j] from memory.
This problem is common in code working on arrays and/or pointers. One could
argue that ambiguous aliases are not very common in most programs, but the
flush/reload cost is high enough to make them a significant performance issue
even when they are relatively rare. More importantly, using SWAR-like methods
to operate on wide lines can be expected to dramatically increase the number of
ambiguously aliased references. In the above example, even if a[i] and a[j] are not
aliased, they may be in the same SWAR line in memory, and thus would need
to be treated as ambiguously aliased references. In effect, this false sharing [17]
forces many apparently unambiguous object references to become ambiguously
aliased line references. CRegs solve the ambiguous alias flush/reloadIn effect,
this “false sharing” [17] forces many apparently unambiguous object references
to become ambiguously aliased line references. CRegs solve the ambiguous alias
flush/reload problem by using hardware to associatively update aliased objects
in registers. The mechanism proposed in the current paper, LARs, can be seen
as fundamentally extending CRegs to work with wide lines rather than single
objects in registers problem by using hardware to associatively update aliased
objects in registers. The mechanism proposed in the current paper, LARs, can
be seen as fundamentally extending CRegs to work with wide lines rather than
single objects in registers.

Unfortunately, CRegs have a major impact on the programming model. Fun-
damentally, a CReg is a register that holds both a datum and the address from
which it was fetched. If a CReg’s datum value is changed, then the datum values
in any other CRegs whose address fields match also have their datum changed
to match. This changes the programmer model partly because there is now an
address field that can be operated upon, but more significantly because the
memory access model is entirely different. For example, by associating a dirty
bit with each CReg, store instructions become entirely unnecessary. Despite the
idea being twenty years old, the strangeness of requiring a new instruction set
design has prevented CRegs from being widely applied. The only commercial



implementation to date is the IA64 Advanced Load mechanism [18], which does
not achieve the full benefit because it uses its CReg-like mechanism only as a fil-
ter for memory references rather than as a replacement for conventional registers
and cache.

The associativity concepts in CRegs were also discussed for instruction mem-
ory access in an attempt to eliminate the instruction fetch cycle. A short block
of instructions loaded into an Instruction CReg could be associatively copied
into the instruction register when needed. The concept is somewhat similar to
the trace cache and loop recognition mechanisms introduced by Intel in the P4
and i7 [19,20], but allows more direct compiler control and potentially higher
efficiency.

Architectural Overview

Without introducing a particular instruction set or implementation, any LARs
based architecture would have a number of distinctive properties, which stem
directly from the nature of LARs. It is these properties which make a LARs-based
design attractive for environments where random memory accesses exhibit high
latency, and these same properties which substantially affect the programming
model. The following sections discuss those structures required for a general-
purpose architecture based on LARs for both the instruction and data path,
which differ from a conventional processor design.

The Line Associative Register

In general, a LAR is a very wide register, which contains a number of machine
words worth of data, and several fields worth of metadata. At minimum, this
metadata will contain an address field, which contains specific information to
locate the source from which the LAR was loaded in memory, and to reference
to individual fields of the LAR. A processor can be designed to utilize LARs
for both instructions and data. However, instructions and data exhibit different
access patterns, and therefore benefit from, or even require, slightly different
features to be handled efficiently. Therefore, just as most modern architectures
employ separate instruction and data caches, two slightly different structures
are used for the two paths; Instruction LARS (ILARs) for instructions and Data
LARs (DLARs) for data. The following sections provide details for both Data
LARs and Instruction LARS.

DLARs Data LARs are tagged wide registers that replace the functionality
of both registers and cache in the data path. Each LAR holds enough data for
very wide SWAR operation; scalar operations on any field also are supported.
The tags include address and status bits (e.g., “dirty”) similar to what would
be found in a traditional cache entry, but additionally specify the size and type
of data (signed, unsigned, float, etc.) in the LAR and a specific “current field”
address within the LAR, adequate to address each field with the object size set



to the minimum supported value for a given implementation. As in a CReg, the
use of a dirty bit and address field to detect changed and aliased values allow for
the elimination of a large portion of unnecessary memory accesses. Historically,
a number of earlier architectures have employed type tagging in memory. Intel’s
iAPX432 [21] was perhaps the most extreme in this regard; the entire memory of
an iAPX system was type tagged with an object system, and accessed through
a privilege controlled segment-offset mechanism. Unfortunately, employing type
tagging in memory incurs expensive penalties, in the form of bandwidth over-
head to move tags to and from main memory, and awkward mechanisms to
manipulate the tags. In contrast, tagging data copied into a LAR with quite
a lot of information is cheap, in that it fetches no additional data from main
memory, and easy. By tagging each LAR with type information set at load time,
it becomes possible to simplify the instruction set and increase architectural reg-
ularity, while simultaneously making type-conversion instructions unnecessary.
It also is possible to take advantage of the fact that address field of the LAR is
essentially a typed pointer, so address operations can be scaled by object size
much as the C programming language does for pointer arithmetic. Because of
this capability, scalar operations on objects within a LAR have the full flexibility
to access any field, not just the one in the lowest bits. A generic diagram of the
layout for a DLAR bank is provided below.

Table 1. Data LAR Structure

Address
LAR NR|Data TAG OFFSET WDSZ|TYP|D
2™ blocks|2™ — 2™ bits|m Bits 1 bit
DO
D1
D2
Dxx

ILARs ILARs support only a fixed field size (one instruction), and have only
address and data fields, as the others would be superfluous. However, ILARs’
complication comes from their effect on the execution model. Because instruc-
tions are always fetched in blocks determined at compile time, and are addressed
by block and offset within an TLAR, it is trivial to apply a compression algo-
rithm on ILAR-sized blocks of instructions, or multiples thereof. Instruction
blocks, therefore, must be explicitly fetched and decompressed into instruction
LARs before they become accessible, as individual instructions may literally
have no address in memory. This fetch cycle is only coupled to execution by the
explicit issue of fetch instructions, making an entirely LARs-based architecture
not technically a Von Neumann design.



Instruction Set

The typed, SWAR capable design allows for an extremely rich set of functions
from a small instruction set; the same instruction encoding can be used for anal-
ogous operations on all supported data types, and executed on the proper func-
tional unit based on the type field of the data LAR being acted upon. Likewise,
scalar and vector operations can simply differ by a switch. Scalar operations do
require extra fields, as the offsets must be specified . The only instruction which
must be varied for each individual data type is the load for moving data into
DLARs, as this is the mechanism by which the type field is set at load time.

Calling/Return Behavior

One of the more substantial challenges presented by an architecture which has
no permanent linear address space is the problem of resolving return addresses.
Return addresses, in the form of a block and offset, must be resolved at the time
the call is made, so that the block containing the return point can be loaded into
an ILAR and decompressed before the return completes. To this end function
calls and returns are managed by a hardware stack mechanism, specifically de-
signed to be implementable with a multitude of underlying mechanisms, which
offer different trade offs between performance and hardware complexity. As ex-
amples, return stack can be a FIFO as the name suggests, managed by a more
complicated replacement policy, or, to trade performance for hardware complex-
ity, simply nonexistent. To maintain the stack, call instructions look very much
like a normal return instruction; it prefetches the destination block, into a stack-
like arrangement of ILARS which are not expressly addressable. On return it
is then possible to associatively update the ILAR line being returned to. The
pre-fetch area (stack) will be invisible to the user, and can, at the discretion of
the implementer, buffer the entire ILAR, the uncompressed headers and com-
pressed instruction block, only the header, or, again simply do nothing. If the
ILAR being returned to is still cached in the stack, one of the addressable ILARs
can be associatively updated from the ”invisible” one in the stack, providing a
clean, fast return. If the ILAR data has spilled from the stack, or was never
actually stored, the information which has been saved can be used to pre-fetch
the ILAR into which the return points. If no information is available, there will
be a considerable stall while the suitable block is loaded from main memory,
which is comparable to the worst case on more conventional designs.

Current Implementation

Despite being a work in progress since 2004, research into LARs is still very
much an ongoing project. A number of steps have been completed toward better
understanding of the demands and ramifications of LARs-based designs. On one
front, several students have implemented a simple LARs-based design in the
Verilog hardware description language, and in doing so have demonstrated that
the required circuit size and complexity is feasible for a modern processor design.



In parallel, there has been theoretical work into the ramifications of LARs on
the programming model, which is now reaching a practical stage, in the form of
a rudimentary compiler currently under development.

Hardware Verification Model The current reduced-size synthesizable test
core, which uses 8 64bit data LARs and 6 1024Bit instruction LARs, synthesizes
to an FPGA in approximately 50,000 4-input LUTs, with a maximum clock
frequency of 60MHz, prior to optimization. This large size is to be expected,
since the LARs effectively encompass the portion of a modern chip devoted to
both the register file and to on-die caches.

Software Currently, a rudimentary compiler is being built within the LLVM
infrastructure [22] to target an internal ”straw-man” LARS-based architecture.
While this compiler is still incomplete, it appears that compiling for LARs will
only require changes comparable to those required for any porting effort. How-
ever, a relativity complicated assembler is necessary to handle packaging blocks
of code and inter-block scheduling in the output language. The LLVM infrastruc-
ture was chosen as a starting point for several reasons. First, using an existing
compiler infrastructure avoids the cumbersome overhead involved in writing com-
mon components not affected by the architecture; such a language fronted, and
tools for manipulating the intermediate language. Secondly, the LLVM code base
is considerably more accessible than many of it’s well-established predecessors.
The most important impetus behind the decision to use an existing infrastruc-
ture is however that doing so demonstrates that conventional tools and code can
be adapted to LARs-based designs, despite the wildly different . The use of a
standard fronted in particular will demonstrate that standard code, can be built
for a LARs-based target without any programmer-visible changes.

Summary

Line Associative Registers (LARs) are the basis for a new class of processor
architectures in which memory accesses are minimized by explicitly managing
wide lines of instructions and data in processor registers. LARs fill the role of
both registers and caches in a traditional memory hierarchy, bringing many of the
advantages of each while avoiding their more egregious faults. An architecture
based on LARs will present an extremely unusual execution model, which is
better suited to the severe latency between processor and main memory present
in modern systems than more conventional designs. While this execution model
will break many assumptions from a conventional Von Neumann architecture,
it should be possible to build unmodified code in existing, popular languages
with no more intervention than is required to port between more traditional
architectures.
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