Much Ado about Almost Nothing:
Compilation for Nanocontrollers

LCPC2003
11:40-12:00, Saturday, October 4, 2003

Hank Dietz, Shashi Arcot, and Sujana Gorantla
Electrical and Computer Engineering Department
University of Kentucky

Lexington, KY 40506-0046
http://aggregate. org/ hankd/

Much Ado about Almost Nothing

Slide 2/19

Why Nanocontrollers?

« Nanofabrication techniques allow:
 Features as small as "30 nanometers
e Micrometer-scale devices: sensors, actuators, etc.
* Low-temperature processing (can build over circuitry)

« How can we Intelligently control thousands to millions of
micrometer-scale devices on a single chip?

 LOTS of signals with off-chip processing?
 LOTS of signals multiplexed by an on-chip processor?

* A massively-parallel computer on a chip:
LOTS of tiny nanocontrollers, one per device!

Much Ado about Almost Nothing

Slide 3/19

What Must A Nanocontroller Be Able To Do?

* Minimal Circuit Size

* Predictable Real-Time Behavior

e Localized Input/Output

« Coordination as a Parallel Computer

« Each nanocontroller independently programmable (MIMD)
* Reprogramability

Much Ado about Almost Nothing

Slide 4/19

Nanoprocessor/Nanocontroller Architecture

« No previous architectural model fits:
« Radical new architectures aren’t sufficiently developed

« MIMD is close, but circuit complexity is too high...
especially for program memory

« SIMD is very close...
but PEs are not independently programmable

« SIMD executing MIMD code by interpretation also needs
too much local memory for programs

« Kentucky Architecture is SIMD-like hardware with compiler
technology that transforms MIMD code into pure SIMD
code so control flow is entirely replaced by selection

Much Ado about Almost Nothing

Slide 5/19

Meta-State Conversion (MSC)

Developed in 1992-1993 for MasPar MP-1 distributed-
memory SIMD to execute shared-memory MIMD code

State-space transformation, like NFA-to-DFA conversion;
In practice, number of states grows slowly

A SIMD Meta State corresponds to each set of possibly
temporally co-existant MIMD node states

Code within a Meta State is executed with processors
enabled only for the code they should execute

Common Subexpression Induction (CSI) i1s used to
create common instruction sequences, thereby minimizing
disable time for each processing element

Much Ado about Almost Nothing

Slide 6/19

A Simple MSC Example

if (A { do {B} while (O); else do {D} while (E); } F

o
G G
o

Much Ado about Almost Nothing

Slide 7/19

The Current Paper’s Approach

* Implement nanocontrollers using:

o Simplified Kentucky Architecture design, KITE, which
reduces ALU to a single 1-of-2 Multiplexor

o Compilation of word-level operations directly into bit-
level If-Then-Else (ITE) operations optimized by
techniques borrowed from logic optimization

o Greatly simplified MSC and CSI due to the fact that ITEs
directly implement enable masking

e Disclaimers: no KITE hardware has been built and the
compiler system described is a research proof-of-concept

Much Ado about Almost Nothing

Slide 8/19

Kentucky If-Then-Else

KITE

D D
///,,,N,”/U ,////, “/“/U ,///,,,,,
/// //////,//// ALLEERRRARERRARS

,/,/,,/, AR WY

////// ,/// \ /N//U“ N/ //// \ /N//U”/N//N// \ /UH/N
SR W, MINNN W, MM

/// //// ,/// //M,M/ / NN /M,M
ARRRRRARRRN

,_,, /,,,,/ MY

\

/ AN ,
AR
/é,

7

\

,/////”/////, ,,N“,NH/ ////U/ ,/“,N“,/”////// ,//
WY //// MY
/ /;//,///:,,

/// ARANNY /,//// ///

,////// //,

MR //// NN ,, DM
| ,N%% ,////Z%% W %%% W Z NN
AL RITHI

h ,/,,,,/

AN
//

,///,z NN
, ;,,, //, i,, ,,,;, i,, WY //,,
ARREY ARRRN /,//// AR ,//7/ WAL /,////
ALY
\y M/ ,,////////,/,,

\
NN /// RN /;,,///
AT ZU,/
/// /,2/,,,,////,, AN ,/,

/, N\ ARRRARRS
ARARANN //// AARANS
/;M,M/,////;M,M/
A
,,,,/_ MM ,//_,,/m

AR R /

\

// /,/xx% ,7
DA

Register File

,// ,////// ///// ,////// //,

Y,

AN\

Y b, '
AN /z,,, NI

N

D OuUT

A

Co

Cl SITE

Cl SITE GOR

W TW EW

RN RW

Much Ado about AlImost Nothing

Slide 9/19

KITE: Kentucky If-Then-Else

e Only instruction is SITE: Store-If-Then-Else
o Control unit like VLIW multiway branch unit, not SIMD CU:
* No scalar instructions in CU

« Fancy management for fetch and caching of
compressed basic blocks of instructions tagged with
multiway exit arcs

* Clock rate determined by (possibly off-chip) instruction
memory

 Sequencers fed SITEs at intermediate clock rate, locally
broadcast control signals at full clock rate

* Nanoprocessor/Nanocontroller runs at full clock rate, 4
cycles/SITE

Much Ado about Almost Nothing

Slide 10/19
Programming Language: BitC
« A very small C dialect
« Minor extensions to C data types:
« Explicit precision; e.g.,int: 3 a;
« 1/0O and communications; e.g., i nt: 1 adc@;

« All applicable C operators plus a few others:
?< (min), ?> (max), $ (population count), etc.

« The usual control flow, but no recursive functions

Much Ado about Almost Nothing

Slide 11/19

Transforming Word-Level To Bit-Level

e BitC code:

unsigned int:2 a, b, c;
c = a + b;

« Function on arbitrary-precision values:
(in fact, a 3-bit result is computed and top bit is ignored)

{cl, c0} = {al, a0} + {bl, bO}
» Bitwise logic expressions:

cO = (a0 XOR bO0)
cl = ((al XOR bl) XOR (a0 AND b0))

Much Ado about Almost Nothing

Slide 12/19

ITE Equivalents For Familiar Logic Operations

* Like NAND, ITEs are complete
« XORs are not effi ciently represented using ITES

Logic Operation Equivalent ITE Structure
(x AND y) (x 2y : 0)
(x OR vy) (x ?2 1 : vy)
(NOT x) (x 2 0 : 1)

(x XOR vy) (x ?2 (y 20 1) : y)
((NOT x) ? vy : z) (x ?2 z : vy)

Much Ado about Almost Nothing

Slide 13/19

Transformation Into ITES

» Bitwise logic expressions:

cO = (a0 XOR bO0)
cl = ((al XOR bl) XOR (a0 AND b0))

* ITE equivalents:

cO = (a0 ? (bO ?2 0 : 1) : DbO)
cl =((al ? (b1 ?20: 1) : bl) 2
((a0 2 bO: 0) 20 : 1) : (a0 ? b0 : 0))

« But those aren’t the ITEs we actually generate...

Much Ado about Almost Nothing

Slide 14/19

Optimization Of ITEs

e Can use Multi-level Multi-value Logic Minimization
 Normal form is identical for equivalent circuits
e Bryant Normal Form for BDDs of the form (a ? b : ¢):
 Require a is an input, lexically before inputs in b and c
o Karplus improvements to Bryant’s normalization:
* More direct production of normal form...
o Karplus Normal Form:
o Allow NOT of a, b, or ¢ (to make form more compact)
 Require inputs in a, b, and c to be lexically ordered

Much Ado about Almost Nothing

Slide 15/19

Bryant Normal Form

64(220:1)

™~
67(3?@ 69(3764:2)

\ /

T
r6=65 68(4767:66) 70(4769:3)

71(5768:70)

66(320:1)

Much Ado about Almost Nothing

Slide 16/19

A Larger Example:int: 8 a; a=a*a;

<A . A

98(423:1) [(69(321:2) % 81(372:1) SX 75(5?4:0) 65(473:0) \5714 2:3) ”
{ \ X \
—— -
.l [S =
<
1 L \; / <
99(5798:0) 68(3766:1) | 91(5787:65) 79(371:66) 93(472:81) 85(4781:0) 70(3766:0) 77(320:66) 67(3766:2) 88(4766:2) 76(4772:64)
\
\ _— /]
|~ / / -

AN

\
(/

/
‘ N /

\\
—
. —7 A e N . PSS S v e . N = X S
. (83(4768:0) / (78(4277:69)) (101(4277:3)) (82(4?81:70)) (106(4?81:67)) (ra@r10:3)) | (=10) (73@4260:67)) (80W?79:2)) (B4(@?77:2)) (92(420:77)) (95(4267:66)) (86(47067)) (104(5788:2)) (71(47%67:2)) ((15=T6)

e —
1 97(5793:74) 89(5784:85) 94(5792:73) 103(5?67:80) 90(5786:71) 96(5795:2)

~
100(570:78) 102(57101:67) 105(572:82)

107(57106:3)) (108(573:83)

s ,,7%\”\/7}&/\/ — o D N Y
(114(67105:107) (115(67108:75)) (112(67100:102)) (111(6797:99)) {109(6290:91)) (16=89) (110(6704:96)) (113(67103:104))

114115

19(82117:118 18-116

Much Ado about Almost Nothing

Slide 17/19

Predication (Selection) Is Trivial Using ITEs

 Consider:

1f (a) { b=c; i1f (d) e=f; else g=h; i=5; } k=l;

* By simple if-conversion, we get:

(a ?c . b);

((a?d: 0 ?2f : e);

((a?(d?0: 1) : 0) ?h: g); /*typoinpaperswapsh,g*
(a?] 1 1);

|

X TTQ @ T
i mmn nu

e This is precisely what MSC+CSI guards look like!

Much Ado about Almost Nothing

Slide 18/19

Preliminary Results

o Compiler speed is not a problem

o Complexity of high-precision XOR-based arithmetic:
Bryant’s form forint: 12 a, b; a=a*b; has 156,392 ITEs;
use multiple-state sequence for high precision?

« Normal form perfectly recognizes word-level identities,
although it wasn’t told about any of them...
e.dg.,int a,b; a=a+b; a=a-b; generates no ITES!

* Normal form could be used to disambiguate indirect
references...

Much Ado about Almost Nothing

Slide 19/19

Conclusion

ITE-based multi-level multi-value logic minimization can be
used to optimize compiler’s bit-level coding of word-level
operations, while dramatically simplifying MSC+CSI

SITE-based KITE architecture viable as a nanocontroller:
circuit complexity potentially “100 transistors/processor

ITE normal forms have beneficial side-effects In
recognizing equivalence of expressions

Yet to be done: register allocation, instruction block
encoding, implementation of KITE system

Much Ado about Almost Nothing

