
A Gate-Level Approach To
Compiling For Quantum Computers

Keeping Current, 4:30PM Feb. 13, 2019

Hank Dietz
Professor and Hardymon Chair,

Electrical & Computer Engineering



What Is A Quantum Computer?

Parallel processing without parallel hardware.

∙ Qubits instead of bits
– Each qubit can be 0, 1, or superposed
– Entangled qubits maintain values together
– Measuring a qubit’s value picks 0 or 1

 ∙ Quantum computers are not state machines;
all they implement is combinatorial logic

 ∙ Gates implemented in sequence



Kentucky’s Rotationally 
Emulated Quantum Computer

∙ 6 qubits encode up to 26 6-bit values



Optimizing / Parallelizing 
Compilers

∙ Programming languages like C and Fortran
∙ Lots of analysis and transformations!
∙ Speedup-oriented automatic parallelization

– Recognize parallelizable loops, etc.
– Rewrite for as parfor, etc.

∙ Many optimizations, mostly at the word level:
Common subexpression elimination, folding,
register allocation, code scheduling, …

… do this at the bit level!d to do



True Bit-Level Optimization

∙ Bit-slice systems were generally microcoded
to implement a simple word-level ISA

∙ Word-level operations can imply useless work
– E.g., using an Add to add 4 to a register:



True Bit-Level Optimization



True Bit-Level Optimization



Language Support For
Bit-Level Specification

∙ How big is an int?
– C has types like int_fast8_t
– Only supports 8, 16, 32, or 64 bits
– PCC: 2,882 int, 174 unsigned, but

just 44 specifying 8, 16, 32, or 64 bits!
∙ Allow syntax like int:10
∙ Can also use for floats, although we prefer

specifying accuracy rather than precision



Language Support For
Explicit Quantum Algorithms

∙ Allowing quantum values has very little impact
on gate-level logic design optimization

∙ Could allow a q attribute for quantum bits
– q int:5 a; would be a 5-qubit integer
– int:5 *q p; would be a qubit pointer to

a randomly selected 5-bit signed integer
∙ Could allow ? to be superpositioned bits

– a=?; sets a to all possible 5-bit values



Issues In The Prototype
“Hardly Software” Compiler

∙ No range nor precision analysis
∙ No code generation for array references –

perhaps a conventional memory interface?
∙ Seamless handling of function calls, including

recursion, not yet implemented (needs arrays)
∙ No support for cracking basic blocks –

a single very complex basic block can
increase the size of the combinatorial
logic for all states



Basic Compilation Example

∙ Consider a trivial (8-bit default int) program:

int a, b, c;

main()
{
b = 42; a = 100;
while (a > b) a = a ­ 1;
c = a ­ b;

}





CSWAP (Fredkin) Logic

∙ “Billiard-ball model” adiabatic gate
∙ All signals must be unit-fanout
∙ Efficient quantum implementation (2016)









CSWAP Output From Prototype 
“Hardly Software” Compiler

∙ Unit-fanout CSWAP generation:
1. AND/OR/NOT/XOR ⇒ mutiplexors (MUX)
2. MUX ⇒ CSWAP, inserting duplication

gates wherever there is fanout
3. Search to use alternate CSWAP outputs
4. Order CSWAPs to sequence use of control

pass-thru outputs, remove duplicate gates
∙ Considering Genetic Algorithm restructuring

to minimize CSWAP complexity...



Second Prototype Compiler

∙ Reimplementation using code from BitC
∙ New SITE ⇒ CSWAP algorithm

– Incrementally creates duplicates as needed
– Tracks “lanes” and routes new values to

same lane the target variable began in
∙ Output as Verilog code, text “lane” diagram,

gate list, and circuit diagram



int:4 a; a=a*a;



Use Of Entangled Qubit
Quantum Computation?

∙ Could express quantum algorithms using ?
Hadamard values… by writing new code

∙ Compiling ordinary C code results in CSWAP
logic that never uses entangled qubits?
– Could substitute quantum operations for

basic math functions, e.g., sqrt()
– Could recognize parallelizable loops

that produce a single result and
“parallelize” them using Hadamard inputs



Conclusions

∙ Reduce power by using fewer gate-level ops
∙ Complete state machines can be implemented

with minimal (if any) reconfiguration
∙ Gate-level compiler optimization of whole C

programs to unit-fanout CSWAPs is feasible
∙ More to do to make use of entangled qubits,

improve optimization


