
  

Solace of Quantum

July 14, 2022

Henry Dietz
Electrical & Computer Engineering



  

Solace of Quantum
We live in what appears to be the end days of Moore's Law. His 1965 prediction that the amount of 
circuitry one could cost-effectively place on a chip would exponentially double roughly every two 
years meant that computers could become faster primarily by parallel processing: performing many 
operations simultaneously. Unfortunately, now that rate seems to have slowed and we also are 
suffering from the fact that power consumption per unit circuitry has not dropped as fast as circuit 
complexity has grown. What we need is a way to continue to increase parallelism without 
correspondingly increasing the amount of circuitry needed and power consumed.

Quantum computing has the potential to provide a very restrictive, but massively parallel, form of 
computation in which an exponential amount of parallel computation is supported per unit hardware 
and power consumption. This talk will focus mostly on how quantum computing works as a 
computational model: how are they are programmed and what they can -- and cannot -- do. The 
current state of the art in quantum computing, and what the future might bring, will be discussed.



  



  

Solace of Quantum?

Solace: comfort or consolation in a time of 
distress or sadness

● What are we so upset about?

● How is Quantum Computing comforting us? 



  

How Computers Get Faster:
Moore’s Law

● 1965 prediction
– Not about chip speed
– Circuit complexity 2X

every 18-24 months

● Speedup is mostly about
parallel processing



  

Parallel Processing

● Break program into N pieces that can execute 
simultaneously
– Scalable: bigger N, more speedup
– Modular hardware
– Can be fault tolerant using redundancy

● Massive parallelism makes big, power-hungry,
computers if Moore’s Law fails us...



  

Is Moore’s Law Still Valid?

● It was…
– Until ~2013
– Not dead yet
– A little slow now,

not recovering?

● It will end.



  

Why We Are Upset: Top500.Org

● Tracking supercomputer
speed since 1993
– 2X every year

(faster than ML!)
– Since 2013, curves

are leveling-off...

● What’s happening?



  

All The Bad News

● ML slowing

● Power/transistor ▼
slower than
transistors/chip ▲

● Individual ops not
getting much faster



  

Solace of Quantum Computing

● Massively-parallel processing without
massively parallel hardware

● Potentially very low power consumption per unit 
computation performed

● Individual ops could be almost instantaneous



  

Quantum Computing

● State-of-the-art conventional processor chips 
already depend on quantum phenomena, but just 
implement conventional logic with it

● Quantum Computing is about using quantum 
phenomena to implement a different model
– Adiabatic optimization (e.g., by DWave)
– Quantum gates (by most others)



  

Conventional Computing

● Memory is made of Bits, each holding 0 or 1
– Bit values reliably persist forever
– Every bit can be accessed by addressing

● Processor (perhaps one of many in a system)
– Gates: AND, OR, XOR, NOT, NAND, NOR, MUX… 
– Fanout is allowed (e.g., FOF = fanout of 4)



  

Quantum Computing

● Memory is made of Qubits, each holding a 
probability density function for 0 and 1
– Qubit value collapses to 0 or 1 when read
– Values have a limited lifespan (decoherence)

● Processor (really PIM: processors in memory)
– Gates: NOT, CNOT, CCNOT, SWAP, CSWAP… 
– Fanout is not allowed



  

Bloch Sphere Qubit Model

● Value of a Qubit is a wave function

● Probability by coordinates on sphere surface



  

Quantum Processor

● Gates aren’t hardware structures
– Gates operate on Qubits “in place”
– Gates are forces imposed on Qubits
– Conventional computer implements control

● Processor (in the best case, one per qubit)
– Gates: NOT, CNOT, CCNOT, SWAP, CSWAP…

all must be thermodynamically reversible
– Fanout is not allowed



  

Quantum Gate Types: Pauli

● Pauli X is also known as NOT 
– Rotates Bloch Sphere around X by π radians
– Functions like conventional NOT
– NOT is its own inverse

● Pauli Y rotates around Y and Pauli Z around Z



  

Quantum Gate Types: CNOT

●CNOT is the Controlled NOT gate
– Top input is control, passes thru unchanged
– Bottom input is inverted where control is 1
– Both inputs can’t be the same Qubit
– Similar to conventional XOR gate



  

Quantum Gate Types: Toffoli

● Toffoli is also known as CCNOT,
Controlled Controlled NOT
– A classical universal gate
– Top two inputs pass unchanged
– Bottom input is inverted where

both control inputs are 1
– Behaves like C = (A AND B) XOR C



  

Quantum Gate Types: SWAP

● SWAP exchanges values of two Qubits
– Seems pointless...

but this is a reversible assignment



  

Quantum Gate Types: Fredkin

● Fredkin is also known as CSWAP,
Controlled SWAP
– A classical universal gate…

and billiard-ball conservative
– Top input passes unchanged
– Bottom inputs are swapped

where top control input is 1
– Behaves like paired conventional MUXes



  

Quantum Gate Types: Hadamard

● Hadamard is not like any conventional gate
– A Qubit can only be initialized to 0 or 1
– Hadamard operator converts that into the

equiprobable superposed state: 50% 0, 50% 1

● If applied in parallel to E Qubits, the result is the 
equiprobable E-way entangled superposition



  

Equiprobable E-Way Entangled Superposition?

● Up to this point, nothing about Quantum 
Computing sounded better than conventional…

● Suppose we apply H in parallel to 16 Qubits?
– Those 16 Qubits will hold all 65,536 possible

16-bit values with equal probabilities
– Any single operation on any of those Qubits

will effectively operate on all 65,536 values

Parallel processing without parallel hardware!



  

Quantum Gate Types: Measurement

● Measurement collapses a superposition
– Superposed Qubit becomes either 0 or 1
– Superposed probability density function is

randomly sampled, determines odds of 0 vs. 1

Exponentially cheap parallel computation…
but you only get to read-out one answer per run



  

Quantum Computers?



  

A Real Example On A Fake Computer

● KREQC: Kentucky's Rotationally
Emulated Quantum Computer
– 2018: 6 “Q-bits” 6-way entangled
– 2019: 16 “Q-bits” 16-way entangled

● Really just a display for a simulator; each “Q-bit” 
shows probability of 0 vs. 1 by angle of core




  

Let’s Build A 1-Bit Full Adder



  

Let’s Build A 1-Bit Full Adder



  

Now Give It Superposed Input



  



  




  

So, What Is Quantum Good For?

● Problems where:
– You need to try all possible values
– You don’t need all answers, just one or some†

– You don’t mind occasionally wrong answers
– Combinatorial logic operating on few qubits

† KREQC uses pbits (pattern bits), rather than 
qubits, for entangled superposition… that’s why it 
can list all values and precise probabilities



  

int:4 a; a=a*a;



  

Quantum Supremacy or Advantage

Solving a useful problem faster than any 
classical computer could

● 2019 Google’s 53-qubit Sycamore
● 2020 China’s 113-qubit Jiuzhang
● 2021 IBM’s 127-qubit Eagle



  

Quantum Performance Metrics

● Scale: number of Qubits
● Quantum Volume: largest square-shaped circuit 

successfully implementable (>97.5% correct)
● CLOPS: circuit-layer operations per second
The biggest problem is decoherence, collapse of 
superposition due to noise. Higher entanglement 
gives exponential performance improvement, but 
also much greater noise sensitivity.



  

Solace?

● Yeah!
– Higher entanglement ⇒ exponential savings
– Saves on storage & active gates/computation

● However, thus far:
– More Qubits than you can entangle
– Superpositions don’t survive many gate ops
– Few Qubits, slow cycle times

● Quantum computers are special-purpose



  

Is Special-Purpose Bad?

● Attached special-purpose accelerators are 
common; for example: modern GPUs

● Having special-purpose “dark silicon” power-up 
when needed has allowed processor performance 
to keep improving within a fixed power budget

● Even Shor’s Algorithm to factor large numbers 
is mostly conventional code, but it repeatedly 
invokes a quantum period-finding subroutine...



  

Conclusions

● Quantum computing is a way past Moore’s Law, 
for very specific types of computations

● Quantum computers still have a long way to go
– Quantum hardware might never get there
– Thinking about quantum algorithms often yields 

faster algorithms for conventional computers
● My Parallel Bit Pattern (PBP) uses conventional 

gates to provide quantum-like properties



  

A Bit About My Work...

● I built the world’s 1st Linux cluster supercomputer, 
the model nearly all supercomputers now follow… 
but power/computation is too high at scale!

● My machine room (108A Marksbury) has 170kW, 
30 tons air conditioning, heats half the building, 
and couldn’t power one of thousands of racks in 
the current top supercomputers!



  

To Minimize Power/Computation

● Aggressively optimize code at the gate level
● Work only on active bits
● Try to leverage entangled superposition

I’ve created a model, Parallel Bit Pattern 
computing (PBP), that implements entangled 
superposition with conventional hardware and 

symbolic computation on compressed data


