
Activity Counter:
New Optimization for the Dynamic Scheduling of SIMD Control Flow

Ronan Keryell �
Centre de Recherche en Informatique

École des Mines de Paris
77305 FONTAINEBLEAU Cedex, FRANCE

keryell@cri.ensmp.fr

Nicolas Paris �
Hyperparallel Technologies

École Polytechnique X-POLE
91128 PALAISEAU Cedex, FRANCE

paris@hyperparallel.polytechnique.fr

Abstract
SIMD or vector computers and collection-oriented lan-
guages, like C�, are designed to perform the same com-
putation on each data item or on just a subset of the data.
Subsets of processors or data items are implemented via
an activity bit and a stack of activity bits when subsets of
subsets are supported. This method is also used in VLIWpro-
cessors through if-conversion to implement parallel control
flow as in SIMD computers. We present a new method of dy-
namic sheduling of several SIMD control flow constructions
which can be nested. Our implementation of activity stacks
is based on activity counters. At a given stack depth n, the
number of memory bits required is log2 n, whereas previ-
ous implementations require n bits. The local controller is
of equivalent complexity in both cases. This algorithm is
useful for SIMD, vector or VLIW machines and for compilers
of collection-oriented languages on MIMD computers.

1 Introduction
The data-parallel programming model is seen as an ac-
ceptable solution to efficiently program many parallel ap-
plications on massively parallel machines. In this model,
a single program is applied on different instances of data,
spread across different processors, to gain use of parallelism
on SIMD or MIMD machines.

In an SIMD computer there is a unique instruction flow
and thus performs the same operation on different data. But
a lot of numerical problems, like solving partial differen-
tial equation problems, often need to apply different at the
boundary conditions which are different from the ones used
on the interior points. Such a control flow is often intro-
duced from a sequential program through vectorization and
if-conversion [1].

A similar problem arises in data-parallel collection-
oriented languages like MPL, C� or POMPC [10] where an
SIMD-like control flow must be managed even through func-
tion or procedure boundaries not known at compile time or�Major parts of this work were made when the authors were with
the Laboratoire d’Informatique de l’École Normale Supérieure, 45 Rue
d’ULM, 75005 PARIS, FRANCE. This research and the POMP project
were partially funded by the French Research and Technology Ministry,
Thomson Digital Image, the CNRS (National Center of Scientific Research),
the LIENS, the École Normale Supérieure, the PRC-ANM.

w
h
e
r
e

ne
st

in
g

A
ct

iv
e

In
ac

tiv
e

Activity=0

1

1

1

0

0�
1�sf0

Figure 1: Example of a mask stack.

with recursion. So a dynamic SIMD control flow is needed
to follow the locked-step SIMD semantics.

The goal of these parallel approaches is to obtain maxi-
mal performance on straight regular data parallel problems.
However, it is at least as important to deal correctly with
data parallel control flow and its flexibility.

There seems to be an intrinsic contradiction in the com-
monly used SIMD control flow model and the need for a
local instruction stream, i.e. a bounded dissynchronization
in the synchronous SIMD model, to deal with parallel con-
trol flow. This contradiction is resolved in turning off some
processor elements (PEs) according to local conditions in
SIMD machines, the activity. The nestling of several paral-
lel if is usually managed with an activity stack but here
we present an optimization of this method with an activity
counter instead of a stack.

Section 2 presents our new algorithm with some exam-
ples applied to POMPC parallel control flow operators. Sec-
tion 3 compares the activity stack with our method ac-
cording to time and space complexity, for SIMD and MIMD,
hardware and software. Section 4 presents related work.

2 Activity counter
If we carefully look at the activity bit stack, we see it is only
used to determine the level of inactivity. Figure 1 shows
an example of a nest of 6 parallel control flow statements,
where the first three ones have true conditions (shown as
“1” in the figure) and the condition is false after the third
one (represented by “0”).

Before the first false condition, the stack only con-
tains 1s, indicating that the PE is executing the code. The
exit of a conditional block does not change this activity:

Table 2: Semantic of the push and pop operations on the
activity counter.

Operation Precondition Action
push(cond) c 6= 0 c c+ 1(c = 0) ^ (cond = 0) c 1(c = 0) ^ (cond = 1) c 0
pop c 6= 0 c c� 1c = 0 c 0

the PE remains active. These 1s do not have any intrinsic
significance in the stack.

When a PE reaches a local false condition, it becomes
inactive for all its included blocks. The current activity is
the logical and of the history of activity, i.e. all the activity
bits on the stack. Once a 0 bit is pushed on the stack,
all the following bits on the stack no longer have meaning
(represented with a “�” in Figure 1) since the activity is 0
(inactive).

2.1 Factorization
Indeed the only useful information in this stack is the
nestling level of parallel conditional blocks after the first
idle block, which indicates when a PE can resume execu-
tion. Therefore, it seems a waste of hardware to use a stack
where a plain counter should be enough.

Let push(cond) and pop be the two operations control-
ling the stack (ai)i2N. We can analyze their functionality
according to f0, the rank of the first 0 on the stack, and s
the current size of the stack, according to Figure 1. The
activity of a PE is defined byA = Vs�1i=0 ai. The PE is active
if A = 1 and idle ifA = 0.

By definition, PEs are all active at initialization time, sos = 1, a0 = 1 (active), f0 = s + 1 when there is no 0 in
any stack element. For simplicity a pop on an empty stack
returns an activity true.

Table 1 gives an operational semantics of the activity
stack. A PE is active if and only if f0 = s + 1, when there
is no 0 in the stack. In fact, it is more interesting to do the
variable exchange c = s+1�f0 because onlya comparison
to 0 is necessary. This form is easier to implement in
hardware and often even in software [7, 8]. The basic
manipulations on c are the same as on f0: increment or
decrement, load or store, as shown on Table 2.

The push(cond) when c = 0 can be simplified to c :cond. A more detailed proof of the equivalence between
an activity stack and an activity counter for parallel control
flow can be found in [3, 9].

2.2 Application to a data parallel language
Now we can use this mechanism to implement classical
parallel control flow operators such as those in the POMPC
C-based language [10]. We present only the where and

Table 3: Implementation of the where/elsewhere with
an activity counter.

Operation Precondition Action
where(cond) c 6= 0 (idle) c c+ 1c = 0 (active) c :cond
elsewhere c � 1 (activatable) c :cc 6� 1 c c
End of the where c 6= 0 (idle) c c� 1
/elsewhere c = 0 (active) c 0

the switchwhere but the method is also used for the
whilesomewhere, the return of a parallel function or
procedure.
2.2.1 where

The basic operator is the where/elsewhere pair which
is found in most data parallel languages from FORTRAN 90
to C�.

The where is equivalent to the push operator but we
have to translate the elsewhere. A PE is active in an
elsewhere if and only if the PE was inactive due to the
last where, i.e. the inactivity level c = 1. The value 1 can
be seen here as a special value that codes for an “activatable”
state for the where or elsewhere block.

An implementation is presented in Table 3.
2.2.2 switchwhere

The compilation of a switchwhere, the parallel exten-
sion of the language C switch, also has several states. A
PE can be:

1. inactive before the switchwhere;

2. active in a case (after matching a value) or in a de-
fault;

3. inactive in a case, waiting for a matching value;

4. inactive in the switchwhere because of a break,
until the switchwhere exit.

The break is similar to the whilesomewhere one.
An example of state coding we use is c = 1 for the state 3
and c = 2 for the state 4, as shown in Table 4.

3 Activity counters versus activity
stacks

3.1 On an SIMD machine
The counter method needs a counter with log2 c bits per PE if
at most c levels of parallel conditional blocks are nested. If
each PE has an L-bit operator, a PE needs d 1L log2 ce cycles
of duration t to do an activity counter operation.

The activity stack needs only 1-bit manipulation on each
PE and takes a time t, but needs a stack pointer to manage

Table 1: Semantics of the push and pop operations on the activity stack.

Operation Behavior Precondition Action
push(cond) s s + 1 f0 6= s + 1 f0 f0as cond (f0 = s + 1) ^ (cond = 0) f0 s(f0 = s + 1) ^ (cond = 1) f0 s+ 1
pop if a(s > 1); s s � 1 f0 6= s + 1 f0 f0

return(as) f0 = s + 1 f0 s+ 1aNote that if the program is correct, this condition is always true.

Table 4: Implementation of the switchwhere with an activity counter.

Operation Precondition Action
switchwhere(value) c 6= 0 (idle) c c+ 2c = 0 (active) c 1
case constant : (c = 1) ^ (value = constant) c 0
break c = 0 (active) c 2a
default : c = 1 (activatable) c 0
switchwhere closing c � 1 c 0c 6� 1 c c� 2aMust be relative to the current switchwhere block, if the break is included in one or more where/elsewhere.

the stack. Since the execution is SIMD, all the stacks are
synchronous and the stack pointer can be:� centralized on the scalar processor which broadcasts

its value to the PEs;� distributed with local pointers which evolve syn-
chronously.

In the first case, it takes a time T on the scalar processor
and the time is negligible on the PEs. In the second case,
a time td 1L log2 ce is needed to control the stack pointer on
each PE. The hardware complexity is c for a stack of 1 bit
elements in each case, plus d 1L log2 ce bits for the global
stack pointer in the first case and Nd 1L log2 ce bits for the
local stack pointers in the second case, for aN -PE computer.

The complexity of the three previous methods are sum-
marized up in Table 5.

If the computer has onlyfine grain PEs, typicallyL = 1 or
4 bits, it is more interesting to subcontract the computation
to the scalar processor with a global stack pointer. Indeed,
the scalar processor is often larger and more powerful, so the
stack pointer computation only uses few cycles, and even
the broadcast is often shorter than the td 1L log2 ce required
to deal with a local stack pointer or activity counter by L-
bit slices. Moreover, 1-bit PEs have the advantage that they
easily access memory with 1-bit. This method is used on
computers such as the CM-2 or the MP-1.

The activity counter algorithm is particularly interesting
for coarse grain SIMD machines and could be interesting

in the MP-2. This method is used in our POMP MC88100-
based SIMD computer [4, 8]. These computers often have
short cycle time and the local memory access is slow in
comparison to the PE cycle time.

3.2 On an MIMD machine
The complexity of our method for an MIMD machine is
the same as in table 5 except that since there is no scalar
processor, it is not interesting to have a global activity stack
pointer and thus only local pointers or activity counters are
necessary.

As for the SIMD computers, the same conclusions arise
according to the size of the PEs. Activity counters can
avoid the 1-bit stack management, specially inefficient on
the coarse grain PEs which are in most MIMD computers.
Besides, the activity counter on each PE reduces toO(log c)
the hardware complexity to store the activity.

But unlike SIMD computers, it is not worth implement-
ing the activity counter in hardware since local conditional
jumps are used in fine to efficiently emulate the activity
corresponding to the counter value.

4 Related work
Methods to change control dependance in data dependence
statically deal more or less with activity.

In [1] a complete guard is used and in [6] a minimum
number of guard is produced to control activity.

Table 5: Complexity of the activity counter and activity stack methods.

Parallel Computing complexity Hardware #
conditioning scalar parallel complexity broadcast
Stack (global pointer) T t Nc+ dlog2 ce 1
Stack (local pointers) � t(1 + d 1L log2 ce) N (c+ dlog2 ce) 0
Activity counters � td 1L log2 ce Ndlog2 ce 0

In [5], all the control flow information is kept in an “Exit”
variable similar to our activity counter used for complex
statements like switchwhere or whilesomewhere
with break, case or return..

But none of these methods deals with dynamic schedul-
ing, necessary for recursion or any procedure calls.

A counter methods is also used in [2] for dynamic shedul-
ing in a dataflow-like architecture but there is no support
for recursion.

5 Conclusion
We have developed a new method to dynamically deal with
nested parallel control flow and recursion for SIMD and
MIMD computers, and compilers for languages with collec-
tion oriented data parallelism.

This technique allows a reduction to a straight logarith-
mic term of the size in bits of memory used to keep track
of the PE history, more efficient on coarse grain parallel
computers and VLIW processors.

The optimization is also interesting for compilers tar-
geted to modern MIMD computers when the nested parallel
control flow cannot be resolved at compile time. For ex-
ample, if different collections are mixed, interprocedural
analysis is not performed or not possible, or if complex
sub-array selections cannot be determined. If the activity
counter method can often be replaced by MIMD local control
flow, for complex nested case it seems a better choice.

At last, it is a way to compile nested parallel flow control
flow in a “flat” normal form as in F90 or HPF where such a
nestling is not allowed.

The activity counters are used in the POMP computer and
also in the POMPC compiler for CM-2, MP-1, iPSC/860 and
ARMEN.

6 Acknowledgements
The authors of this paper would like to acknowledge many
useful discussions with all the members of the POMP team
since the beginning of the project.

Special thanks are due to Luc BOUGÉ and his team, es-
pecially Jean-Luc LEVAIRE, for their discussions on SIMD

semantics in parallel control flow and for their interest for
the domain and our work.

At last but not the least, the authors are indebted
to Kathryn MACKINLEY, François IRIGOIN and Pierre

JOUVELOT for their invaluable comments and their appro-
priate suggestions.

References
[1] J. R. ALLEN, Ken KENNEDY, Carrie PORTERFIELD, and Joe WARREN.

<< Conversion of Control Dependence to Data Dependence >>.
In Conference Record of the Tenth Annual ACM Symposium on
Principles Of Programming Languages,pages 177–189. Association
for Computing Machinery, January 1983.

[2] Carl J. BECKMANN and Constantine D. POLYCHRONOPOULOS. <<
Microarchitecture Support for Dynamic Scheduling of Acyclic Task
Graphs >>. In The 25th Annual International Symposium on Mi-
croarchitecture,volume 23(1-2), pages 140–148.ACM SIG MICRO
Newsletter, December 1992.

[3] Luc BOUGÉ and Jean-Luc LEVAIRE. << Control structures for data-
parallel SIMD languages: semantics and implementation >>. Future
Generation Computer Systems, 8(3-4):363–378, 1992.

[4] Philippe HOOGVORST, Ronan KERYELL, Philippe MATHERAT, and
Nicolas PARIS. << POMP or How to Design a Massively Paral-
lel Machine with Small Developments >>. In PARLE ’91 Par-
allel Architectures and Languages Europe, volume 505(I), pages
83–100. Lecture Notes in Computer Science, Springer-Verlag, June
1991. Available by ftp anonymous on spi.ens.fr in the file
pub/reports/liens/liens-91-5.A4.ps.Z.

[5] Bor-Ming HSIEH, Michael HIND, and Ron CYTRON. << Loop Distri-
bution with Multiple Exits >>. In Supercomputing ’92 (Proceedings),
pages 204–213.The Institute of Electrical and Electronics Engineers,
Inc., November 1992.

[6] Ken KENNEDY and Kathryn S. MCKINLEY. << Loop Distribution
with Arbitrary Control Flow >>. In Proceedings of Supercomput-
ing ’90, pages 407–416. The Institute of Electrical and Electronics
Engineers, Inc., November 1990.

[7] Ronan KERYELL. << POMP2 : D’un Petit Ordinateur Massive-
ment Parallèle >>. Rapport de magistère, LIENS — Ecole Normale
Supérieure, October 1989.

[8] Ronan KERYELL. << POMP : d’un Petit Ordinateur Massivement
Parallèle SIMD à Base de Processeurs RISC — Concepts, Etude et
Réalisation >>. PhD Thesis, Laboratoire d’Informatique de l’Ecole
Normale Supérieure — Université Paris XI, October 1992.

[9] Jean-Luc LEVAIRE. << Contribution à l’étude sémantique des lan-
gages à parallélisme de données; application à la compilation >>.
PhD Thesis, LIP — ENS Lyon, Université de Paris 7, February 1993.

[10] Nicolas PARIS. << Definition of POMPC (Version 1.99) >>. Techni-
cal Report LIENS-92-5-bis, Laboratoire d’Informatique de l’École
Normale Supérieure, March 1992. Available by ftp anonymous
on spi.ens.fr in the file pub/reports/liens/liens-
92-5-bis.A4.ps.Z.

