
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985 943

"Hot Spot" Contention and Combining in Multistage
Interconnection Networks

GREGORY F. PFISTER, SENIOR MEMBER, IEEE, AND V. ALAN NORTON

Abstract — The combining of messages within a multistage
switching network has been proposed [1], [11], [14] to reduce
memory contention in highly parallel shared-memory multi
processors, especially for shared lock and synchronization data.
This paper reports on a quantitative investigation of the per
formance impact of such contention, performed as part of the RP3
project [7]-[9] and the effectiveness of combining in reducing this
impact. We investigated the effect of a nonuniform traffic pattern
consisting of a single hot spot of higher access rate superimposed
on a background of uniform traffic. The potential degradation
due to even moderate hot spot traffic was found to be very signifi
cant, severely degrading all memory access, not just access to
shared lock locations, due to an effect we call tree saturation. The
technique of message combining was found to be an effective
means of eliminating this problem if it arises due to lock or syn
chronization contention.

Index Terms—Concurrent computation, highly parallel sys
tems, hot spots, message combining, multiprocessors, multistage
interconnection networks, parallel processing.

I . INTRODUCTION

IN proposed highly parallel multiprocessor systems, e .g. ,
systems with 100 or more processors, contention for

memory access is a potential bottleneck. At the same time, it
is often proposed that access to a shared memory in such
systems be provided by means of a message- or packet-
switched multistage switching network, with topologies such
as a tree [12], Omega network or variant [1] ,[9] , binary
N-cube [11], etc. Two projects in this area, the NYU Ultra-
computer [1] and the Columbia CHoPP (or GEM) [11], [14],
have proposed the technique of message combining within
the switch to use its multistage nature to help alleviate poten
tial memory access bottlenecks. This technique (described in
more detail below) merges similar references into composite
combined references at each stage of the network.

However, the proposers addressed neither the detailed
hardware cost nor the benefit to be derived from this tech
nique in a quantitative fashion. This paper addresses these
issues.

The hardware needed to support this feature is quite costly.
As part of the RP3 project [7] - [9] , detailed cost and size
estimates were made based on state-of-the-art silicon and
packaging data. These indicated that message combining in-

Manuscript received February 1, 1985; revised May 30, 1985. This paper

appeared in the IEEE 1985 International Conference on Parallel Processing, St.

Charles, IL, Aug. 1985.
The authors are with the IBM T.J. Watson Research Center, Yorktown

Heights, NY 10598.

creases the switch size and/or cost by a factor of between
6 and 32. The wide range is due to the variability of factors
like circuit technology, packaging technology, and network
topology.

To determine if this very significant added cost is worth the
benefit derived, we performed a series of simulation experi
ments whose results are reported and interpreted in this pa
per. The following was determined.

1) A type of network traffic nonuniformity, a "hot spot,"
typically but not uniquely produced by global shared locks,
can produce effects that severely degrade all network traffic,
not just the traffic to shared locks. This effect, which we call
tree saturation, has not previously been reported.

2) This effect is quite general. It is independent of network
topology, switching mode (packet or circuit), or whether the
network is used for memory access or message passing. It
requires only a multistage network with distributed routing,
and a network traffic pattern which, for any reason, exhibits
"hot spot" nonuniformity.

3) Message combining, originally proposed to solve a dif
ferent set of problems, is an effective technique for dealing
with this problem when it arises due to global shared locks.

The technique of message combining is described below,
along with the simulation experiments we performed and
interpretation of the results.

We interpret these results as implying the need for message
combining in any highly parallel multipurpose machine, such
as RP3. The need for combining to avoid the effect of hot
spots can be quantified; we in fact shall show that systems
which do not employ message combining are limited by
tree saturation in the degree of parallelism obtainable. How
the results reported here are being applied in RP3 is also
described.

It should be noted that message combining was proposed
to solve problems different from those reported here. In [1],
its justification is the elimination of serial bottlenecks in
programs. In [11] and [14], its justification is broadcasting
read-only data and reducing the latency of memory refer
ences in general memory traffic. While these claims may be
true, we do not present evidence here to support them. In
particular, we have, and presently know of, no quantitative
evidence to support or deny the value of combining in general
(i .e. , not locking or synchronizing) memory traffic. Such
information is difficult to obtain because it relies on the
dynamic properties of large-scale parallelism, properties
which are not observable without impractically detailed
system-wide simulation. RP3 is itself intended to provide a

0018-9340/85/1000-0943$01.00 © 1985 IEEE

944

II. MESSAGE COMBINING

Message combining works by detecting the occurrence
of memory request messages directed at identical memory
locations as they pass through each switch node. Such mes
sages are combined, at the switch node, into a single mes
sage. The fact that combining took place is recorded in a
wait buffer in each switch node. When the reply to a com
bined message reaches a node where it was combined, mul
tiple replies are generated to satisfy the multiple indi
vidual requests. Since in successive switch stages combined
messages can themselves be combined, the generation of
multiple replies produces the effect of a dynamically gener
ated broadcast of data to multiple processors.

The form of message combining described above is that of
the NYU Ul t racomputer . The Columbia ChoPP /GEM
scheme of "repetition filter memories" (RFM's) operates
somewhat differently, acting more like a cache at each net
work node, and may catch more combinable references.
However, it appears to be an even more complex design, and
since it is usable only for read-only data, it cannot, as will be
seen, address the problem we later present.

III. SIMULATED SWITCH

The specific method of combining investigated here uses a
switch node that is a slight variation on the NYU Ultra-
computer's. Its data flow is shown in Fig. 1. It is a two-way
switch, and actually contains two separate switching nodes:
one in the forward direction, which compares message ad
dresses and performs combining, and one in the reply direc
tion, which performs the required broadcasting.

The forward direction subnode is a standard 2 x 2 cross
bar with output queues, with the following characteristics.

1) The output queues are used only when a succeeding
stage indicates that it cannot accept a message. When not
used, only a single stage of pipelining is seen by the message.

2) Comparisons are performed only between queued mes
sages. Thus, no combining occurs if traffic is low enough that
no queueing occurs.

3) The output queues can accept two messages simulta
neously. This feature is used if two messages destined for the
same output port arrive simultaneously under conditions
where they must both be enqueued.

4) An additional buffer able to hold one complete message
is associated with each input. It is used to hold a message in
the event that the destined output queue is full. Without it,
each node would have to signal to both its predecessors that
it cannot accept input if either queue had less than two mes
sage slots free. With it, the signal that a message cannot be
accepted on a given input is identical to that input's buffer
being full. The buffer therefore allows greater output queue
utilization; and since combining is done only in the output
queues, this greater utilization implies that more opportuni-

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985

Fig. 1. Block diagram of the switch node used in simulation.

ties for combining are available. These additional buffers are
not present in the NYU design.

5) A message can combine with only one other message in
a given node. A combined message can combine again in a
later node.

6) One "packet" of a message travels from one switch
node to the other in a single switch clock cycle (e.g. , with an
8 bit data path a 64 bit message requires 8 clock cycles to go
from one node's queue to the next).

7) The entire operation is completely pipelined, so that
when all arriving messages are combinable, the arrival of two
messages can be overlapped with the departure of a third
message formed as the combination of two prior messages.

Saved information about combinations made in both input
queues is held in a single wait buffer. Replies arriving from
either reverse-direction port are decombined using informa
tion in that wait buffer. The output queues in the reverse
direction are assumed to be able to accept up to four inputs
simultaneously: two messages from the two reverse-direction
inputs and two "decombinations."

More detail about how the comparison and combining
takes place is available in [1].

IV. THE EXPERIMENTS

Our network was configured as an omega network [13].
There were iV processors, Ν memory modules, and the total
switch contained \og(N) ranks of N/2 switches with ranks
connected by a shuffle-exchange connection. Our "pro
cessors" were simply generators of memory request mes
sages. Our memories turned requests into replies in a single
network cycle; this is unreasonably fast, but as will be seen
it makes our results conservative.

In i t ia l ly , we s imula ted a var ie ty of ne twork sizes
(4 < Ν < 64) using the usual, analytically tractable, as
sumption that each source's memory references were inde
pendent and uniformly distributed across the entire address
space. This was done to establish agreement with analytical
models of switch performance (used in [8]), and to determine
the queue length for which adequate performance was
obtained (e.g. , a length of four messages). Under those cir
cumstances, virtually no combining occurred since the

test environment to determine whether such combining is
beneficial.

PFISTER AND NORTON! "HOT SPOT" CONTENTION A N D COMBINING 945

probability that references to exactly equal addresses are
queued in the same switch node at the same time is negligible.

Independent uniformly distributed references are not,
however, an adequate model in the presence of global locks,
even if all nonlock references are uniformly distributed.
Locking operations do not work unless directed at identical
memory locations.

We therefore altered the address distribution to be a "flat"
(uniform) distribution with a single "spike" or hot spot, i .e . ,
a single location to which a specified fraction of the total
memory references was directed. That fraction was varied
from 0.5 to 32 percent.

The simulation results with combining disabled are shown
in Fig. 2. With combining enabled, the same experiments
produced the results of Fig. 3. These figures show the
steady-state average response time for a memory request as
a function of the total switch traffic. The response time is in
units of network cycles, and the switch traffic is in units of
packets per network cycle per input. The lowest dashed line
shows the analytically predicted response time with a uni
form address distribution and infinite queue sizes. The other
lines indicate the response time with various hot spot per
centages.

It is important to note that the response times of Fig. 2 and
Fig. 3 average response time of all memory requests, not
just requests to the single lock location. If the delays for the
hot spot traffic and background traffic are plotted separately,
they are found to exhibit essentially identical behavior (the
hot spot traffic does show slightly more delay). By com
parison, if hot spot and background traffic are plotted sepa
rately when combining is being used, additional overhead
appears only for references to the hot spot.

Combining clearly has a very substantial effect in reducing
the average memory response time. However, two questions
can be asked.

1) Without combining, why do all memory requests, not
just those to lock locations, exhibit increased latency as the
percentage of lock references rises?

2) Is the situation modeled realistic, i .e . , do any practical
situations correspond to the events modeled here?

These questions are discussed below.

V . MODELING OF NONCOMBINING HOT SPOT TRAFFIC

This section addresses the reasons why nonlock memory
requests are delayed. A cause — tree saturation—is de
scribed, and its effect with regard to system scaling is
discussed.

A. Tree Saturation

Examining Fig. 2, one can notice that with a hot spot the
latency climbs to an asymptote at the point where the total
traffic and hot spot percentage combine to saturate the weak
est link in the round trip from processor to memory and back.

More specifically, given that

ρ is the number of processors, and there are an equal
number of memories

120

100 h

Q

Throughput: total packets per PE per cycle

Fig. 2. Average memory latency in the presence of a hot spot, without
combining, versus total network throughput for various percentages of
network traffic referencing the hot spot. The switch nodes used had a queue
size of four messages and a wait buffer size of six messages. The dashed line
shows analytical estimates based on infinite queues.

120

100 h

Throughput: total packets per PE per cycle

Fig. 3. The same experiments and conditions as shown in Fig. 2., but with
combining used.

r is the number of network packets emitted per processor
per switch cycle (0 < r < 1)

h is the fraction of memory references directed at the hot
spot, i .e . , each processor emits packets directed to the
hot spot at a total rate of rh9

then the effective data rate into the "hot" memory module
is r (l - h) + rhp, i .e . , the system attempts to send that
many packets to the "hot" memory module every network
cycle. The asymptote occurs when this value is equal to the

946 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985

capacity of the weakest link in the round trip between a
processor and the "hot" memory. In general, since loads
dominate over stores and the response to a load is generally
larger than the load request itself, the weakest link will actu
ally be the interface between the memory and the return-trip
network. In our simulations, however, all requests and re
plies were the same size, and the memories cycled in one
switch cycle. As a result, the links into and out of the hot
memory should saturate at the same point, namely, when the
above formula equals unity. This is in close agreement with
the simulated results.

Saturating the capacity of the link into the hot memory
causes the queues in the switch closest to that memory to fill;
then the same happens to the two switches in the prior rank
that feed that one; then the same happens to the four in the
next prior rank; etc. Thus, a tree of switches rooted at the hot
memory and extending to all the processors is saturated, i .e . ,
all the queues in that tree are full.

Since the tree has a leaf at every processor, all memory
references from any processor to any memory module must
begin within it, and therefore, all memory references,
whether involved with the lock or not, are delayed. The fact
that some of the references cross only very few levels of the
tree is counterbalanced by the fact that they cross levels
further from the memory, whose queues are emptying most
slowly. Since the memory is filling requests serially, any fair
routing scheme will cause the rate of queue service to de
crease exponentially with distance from the memories.

Β. Effect of System Size on Tree Saturation

The effect of tree saturation as the number of processors is
increased can be illustrated by noting that the asymptotically
maximum network throughput is obtained when the expres
sion derived above for the probability of reference to a hot
memory module , r (l - h) + rhp, equals 1. Thus , the
asymptotically maximum value of the network throughput
per processor, /?, is defined by

R
1

1 + A(p - 1) '

More revealing is the expression

Β = pR
1 + h(p - 1) '

which gives the asymptotic limit of the total communication
bandwidth available as a function of the number of processors
and the hot spot percentage. This is plotted in Fig. 4 as
a function of ρ for various values of h. The amount of
computation a system can do is very strongly related to the
available communication bandwidth for a fixed processor
architecture (neglecting input and output). The graph of
Fig. 4 therefore indicates how hot spot contention, in the
absence of combining, limits the speedup achievable with a
given number of processors. The limitation from this effect
alone is quite significant for large systems: with 1000 pro
cessors, only 0.125 percent hot spot traffic limits the poten
tial speedup to 500, i .e. , 50 percent efficiency.

1000

800 h-

600

400

200 h

200 400 600 800 1000

Number of Processors and Memories

Fig. 4. Asymptotically maximum total network bandwidth as a function of the
number of processors for various fractions of the network traffic aimed at a
single hot spot.

VI. EVALUATION

The simulation and analysis above provides strong evi
dence that tree saturation is a significant problem. What we
claim, however, is somewhat more, namely, the need for com
bining and other techniques to avoid tree saturation in any
large-scale multiple-purpose parallel system. Because this is
a phenomenon which cannot occur in serial machines or in
small-scale parallelism, it is necessary to ask how pervasive
the problem is, and whether it might yield to simpler or less
costly solutions.

A. Generality

The tree saturation effect is not dependent on network
topology for a multistage blocking network with distributed
routing control. All such networks must contain trees from
every sink to every source, which can become saturated and
thereby delay all references. The existence of multiple paths
through the network does not avoid the problem, even with
dynamic rerouting. As congestion begins, the messages to
the hot spot will themselves be rerouted and in the steady
state will saturate all the alternate paths.

It is also clear that there is no requirement that the mes
sages be memory references. Hot spot nonuniformity in the
traffic through a purely message-based system can produce
similar global degradation. It is in principle possible to use
message combining in such systems, but doing so implies
that the transport mechanism should be given some knowl
edge of the message semantics — specifically, how to com
bine them. How one does this has not been investigated.

An effect entirely analogous to tree saturation as presented
here can also afflict circuit switching networks with distrib
uted routing. In this case, there will of course be no effect on
data transfer once it has begun, but the time required to
complete a circuit prior to initiating the transfer will be af-

PFISTER AND NORTON: "HOT SPOT" CONTENTION A N D COMBINING 947

fected. The exact manner in which tree saturation occurs
depends on the distributed routing technique used.

While the presentation here implies that tree saturation
is a result of finite queue lengths, a very similar effect—
with somewhat different causes — can be shown to occur
under the assumption of infinite queues. We do not discuss
this (and the associated analytical model) here due to space
limitations.

B. Realism

Whether the situation modeled is realistic can be divided
into two questions.

1) Is there typically only one hot spot (or at most a small
number)?

2) Is the traffic to the hot spots typically large enough to
cause a problem?

The simulations performed on whole codes at NYU
[2], [4], [5] did, in fact, typically contain only one or two hot
spots at any given time during execution. We are beginning
to augment such experimental results with our own traces of
large parallel applications (not just kernels). The experience
so far is that one or two hot spots are typical, although more
can occur if cacheable data are not designated as such.

On the other hand, it may be argued that one application is
not the right place to look for hot spot references, that the
operating system will normally generate numerous such ref
erences during normal coordination because of the various
central queues which are inherent in parallel systems. We
therefore have also tested the effectiveness of combining
with more hot spots, simulating, for example, five hot spots
in separate memory modules. Essentially identical results
were obtained; combining is still quite effective, and without
it major degradation still occurs. (Were all the hot spots in the
same memory module, identical results would be obtained,
except that larger queues might be needed. Given more than
100 memory modules, address interleaving, and hashing, it is
unlikely that more than one of a small number of hot spots
will lie in the same module.)

For the NYU simulations, the percentage of total data
requests to memory aimed at the hot spot was typically
1-2 percent [3]. This appears inconclusive since with 100
processors Fig. 4 indicates a maximum speedup of only
30-50 in this range of hot spot requests. But the situation is
potentially much worse than that.

For performance reasons, a cache is usually interposed
between the processors and the network, and other results
indicate that approximately 80 -90 percent of all data traffic
can be intercepted by the cache. So the total network traffic,
which is all we are concerned with, is 10-20 percent of the
total data traffic. At the same time, none of the references to
a globally accessed lock can be cached. So the 1-2 percent
of total data traffic to the hot spot(s) represents 5 -20 percent
of the total network traffic. Under those conditions, Fig. 4
indicates that maximum performance is severely degraded:
with 100 processors, the maximum speedup that can be at
tained is in the range of 5 to 20.

It can be argued that the NYU results are not representa
tive. Indeed, they may not be since NYU developed this style

of combining, was testing the concept, and certainly did not
program with the intention of minimizing its use. A factor of
10 reduction in hot spot traffic might reasonably be obtained
by coding that attempted to reduce that traffic.

In addition, there are a number of software techniques that
can be used to reduce hot spot contention. For example, if a
global sum is desired, creating it by filling in a tree of partial
sums can, without combining, make the maximum con
tention a constant (equal to Ν for an N-ary tree of partial
sums), rather than proportional to the number of processors,
as would be the case if fetch-and-add were naively used. We
are, however, unaware of any way to get the full effect of a
combining fetch-and-add — including distribution of the in
cremental sums — by software alone, without combining,
and we suspect it can be proved that this is impossible.

C. Pragmatic Considerations

The above discussion is inconclusive in the absence of a
broader range of experience than is presently available; there
will always be parallel applications which communicate or
synchronize infrequently enough to not cause a problem, and
there are applications which will consistently cause tree satu
ration. However, there are pragmatic points that must be
considered.

Without combining, the potential major loss of efficiency
that hot spot references can cause must be taken into account
in all code written for a highly parallel system. We can
scarcely afford to have this additional complexity permeate
the programming task.

Furthermore, the running of multiple users in a multi
programming environment on a highly parallel machine with
out combining has a serious flaw. Traffic to a single hot spot
has a global effect. Therefore, it is possible for a single user
with a highly parallel task that is not debugged, naive, or
even malicious to degrade the entire system's performance
via hot spot traffic. This is clearly an unacceptable situation.
While it may be possible to avoid it by other means, the
alternatives we are aware of impose more of a burden than the
hardware cost of combining.

D. The RP3 Combining Network

In addition to the above considerations, the RP3 design is
subject to the constraint that, given existing technology, it
is physically unrealist ic to build a combining network
sufficiently fast to support all memory references of 512
processors. The speed required for efficient memory access
implies that the network should be built in a bipolar tech
nology. However, combining is a logic-intensive function
which benefits greatly from the density available in MOSFET
technology.

It is therefore planned to use two different networks in
RP3:

1) a high-speed multistage noncombining network with
sufficiently low latency to handle the normal memory refer
ences of 512 processors, built in bipolar technology;

2) a smaller, slower combining network with character
istics adequate to support the synchronization references of
512 processors, built in MOSFET technology.

948 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 10, OCTOBER 1985

The required separation of memory traffic is achieved by
diverting synchronization references, such as fetch-and-op
[1], test-and-set, etc. , into the combining network. All other
references will use the noncombining network. For experi
mental purposes it will be possible to divert all traffic into
either network.

Software and hardware measures in RP3 are planned to
minimize the potential of tree blockage in the noncombining
network. For example, experiments with parallel memory
reference traces and cache simulation show that the most
common occurrence of hot spots in loads and stores results
from not caching global data which could be cached, for
example, shared "constants" which are stored only once and
then fetched many times. RP3 hardware allowing dynamic
control of cacheability can be used by software to alleviate
such problems.

VII. CONCLUSION

By considering nonuniform hot spot memory reference
patterns, we have demonstrated that multistage blocking
networks have an unfortunate property. A sufficient con
centration of references to one server—a "hot spot" — can
degrade the response of the network to all references, not
just those to the hot spot server, and the potential degradation
is sufficient to cripple system performance. The "tree
saturation" effect causing this requires only that the network
be multistage, blocking, and controlled by distributed rout
ing. Message combining is adequate to deal with this effect.

It is possible to avoid this problem in special-purpose sys
tems, tailored to a particular application. Such systems can
usually incorporate hardware that directly addresses this
problem if it exists in their context.

It is also possible to avoid this problem in some multiple-
purpose systems, if the application is carefully tailored to the
communication topology and, by explicitly managing com
munication, happens to keeps the traffic completely uniform.
This is the case, for example, with the "crystalline" mode of
operation of the Cosmic Cube [10], the mode in which most
of its applications have so far been run.

Message combining provides a solution to this problem. It
requires no additional programming overhead, should be ef
fective in a broad range of applications and environments,
and should enable applications programmers to code without
undue attention to excessive synchronization, with the addi
tional assurance that no one user can degrade a multiuser
system with his own excessive synchronization.

The additional cost of a combining network is outweighed
by its potential advantages, and such advantages grow with
the size of the parallel system. We consider the technique of
message combining to be a required part of RP3, or of any
other multiple-purpose parallel system of comparable size.

ACKNOWLEDGMENT

The authors would like to gratefully acknowledge the as
sistance of A. Gottlieb, who wrote the initial version of the
two-way switch simulation code we used, and M. Wong, who
performed numerous simulation experiments on the effects of
hot spots and combining with a variety of switch designs.

REFERENCES

[1] A. Gottlieb et al., 'The NYU Ultracomputer—Designing an MIMD,
shared memory parallel computer," IEEE Trans. Comput., pp. 175-189,
Feb. 1983.

[2] M. Kalos, "Scientific computations on the Ultracomputer," Courant
Inst., New York Univ., New York, Ultracomputer Note 30, 1981.

[3] , Courant Inst., New York Univ., New York, private commu
nication.

[4] M. Kalos, L. Gabi, and B.D. Lubachevsky, "Molecular simulation of
equilibrium properties. Parallel implementation," Courant Inst., New
York Univ., New York, Ultracomputer Note 27, 1981.

[5] D. Korn, "Timing simulations for elliptic PDE's run under washcloth,"
Courant Inst., New York Univ., New York, Ultracomputer Note 31,
1981.

[6] C. Kruskal and M. Snir, "The performance of multistage interconnection
networks for multiprocessors," IEEE Trans. Comput., vol. C-32,
pp. 1091-1098, Dec. 1983.

[7] W. C. Brantley, K .P . McAuliffe, and J. Weiss, "The RP3
processor/memory element," in Proc. IEEE 1985 Int. Conf. Parallel
Processing, St. Charles, IL, Aug. 1985.

[8] V. A. Norton and G. F. Pfister, "A methodology for predicting multi
processor performance," in Proc. IEEE 1985 Int. Conf. Parallel Process
ing, St. Charles, IL, Aug. 1985.

[9] G.F. Pfister et al., "The IBM Research Parallel Processor Prototype
(RP3): Introduction and architecture," in Proc. IEEE 1985 Int. Conf.
Parallel Processing, St. Charles, IL, Aug. 1985.

[10] C S . Seitz, "The Cosmic Cube," Commun. ACM, vol. 28, no. 1,
pp. 22-23, Jan. 1985.

[11] H. Sullivan, T. Bashkow, and D. Klappholtz, "A large scale homoge
neous, fully distributed parallel machine," in Proc. Fourth Annu. Symp.
Comput. Architecture, 1977, pp. 105-124.

[12] R.J. Swan, S.H. Fuller, and D.P. Siewiorek, "CM* —A modular,
multimicroprocessor," in Proc. AFIPS Conf., vol. 46, 1977,
pp. 637-644.

[13] D. Lawrie, "Access and alignment of data in an array processor," IEEE
Trans. Comput., vol. C-24, pp. 1145-1155, 1975.

[14] L. A. Cohn, "A conceptual approach to general purpose parallel com
puter architecture," Ph.D. dissertation, Columbia Univ., New York,
1983.

Gregory F. Pfister (S'71-M'74-SM'85) was born
in Detroit, MI, on November 29, 1945. He received
the S.B., S.M., and Ph.D. degrees from the Massa
chusetts Institute of Technology, Cambridge, in
1967, 1969, and 1974, respectively, in electrical
engineering.

He joined IBM in 1974, working between then
and 1978 in several organizations on computer
graphics software and remote software service.
From 1975 to 1976 he was on the faculty of the
Department of Electrical Engineering and Computer

Science, University of California, Berkeley. In 1978 he joined the IBM Re
search Division, Yorktown Heights, NY, as a Research Staff Member. He was
Manager of Software Support for the Yorktown Simulation Engine and is
presently Manager of the Parallel Systems Architecture Group, in charge of
RP3 architecture, performance evaluation, and software. His technical interests
include parallel architectures, languages for parallel processing, VLSI design
automation, and computer graphics.

Dr. Pfister is a member of Eta Kappa Nu, Tau Beta Pi, and Sigma Xi.

V. Alan Norton was born in Salt Lake City, UT, on
August 20, 1947. He received the B.A. degree from
the University of Utah, Salt Lake City, in 1968, and
the Ph.D. degree from Princeton University, Prince
ton, NJ, in 1976, both in mathematics.

He was an Instructor at the University of Utah
from 1976 to 1979 and an Assistant Professor at
Hamilton College, Clinton, NY, from 1979 to 1980
before coming to IBM Research. Currently, he is a
Research Staff Member at IBM, Yorktown Heights,
NY, working on the Research Parallel Processing

Prototype (RP3). His research interests include the performance analysis and
architecture of parallel computer systems, parallel algorithms, fractals, and
computer graphics.

Dr. Norton is a member of the Association for Computing Machinery and the
American Mathematical Society.

