
MIMD Interpretation on a GPU

Henry G. Dietz and B. Dalton Young

University of Kentucky, Electrical and Computer Engineering

Abstract. Programming heterogeneous parallel computer systems is
notoriously difficult, but MIMD models have proven to be portable across
multi-core processors, clusters, and massively parallel systems. It would
be highly desirable for GPUs (Graphics Processing Units) also to be able
to leverage algorithms and programming tools designed for MIMD tar-
gets. Unfortunately, most GPU hardware implements a very restrictive
multi-threaded SIMD-based execution model.
This paper presents a compiler, assembler, and interpreter system that
allows a GPU to implement a richly featured MIMD execution model
that supports shared-memory communication, recursion, etc. Through a
variety of careful design choices and optimizations, reasonable efficiency
is obtained on NVIDIA CUDA GPUs. The discussion covers both the
methods used and the motivation in terms of the relevant aspects of GPU
architecture.

1 Introduction

Both conventional wisdom and engineering practice hold that a massively parallel
MIMD machine should be constructed using a large number of independent
processors and an asynchronous interconnection network. However, it may be
beneficial to implement a massively parallel MIMD using what is essentially
SIMD hardware because those structures scale more efficiently to larger numbers
of processing elements. For example, at this writing, both Intel and AMD are
producing multi-core processor chips with no more than 8 MIMD processing
elements – compare this to the hundreds of SIMD-based processing elements
found on the latest Graphics Processing Unit (GPU) chips from NVIDIA [1] and
ATI [2], or even to the 96 processing elements on ClearSpeed’s more conventional
SIMD chip [3]. The primary disadvantage in using a SIMD microengine for
MIMD execution is that execution of different types of instructions must be
serialized. Often, this implies that some fraction of the processing elements must
be temporarily disabled awaiting their instruction’s turn, but even having a very
small fraction enabled can yield more active processing elements per chip than
would be present in a fully-active MIMD chip of similar circuit complexity.

The concept of MIMD execution on SIMD hardware was at best a curiosity
until the early 1990s. At that time, large-scale SIMD machines were widely
available and, especially using architectural features of the MasPar MP1 [4],
a number of researchers began to achieve reasonable efficiency. For example,
Wilsey, et al., [5] implemented a MasPar MP1 interpreter for an instruction set

Algorithm 1 Basic MIMD Interpreter Algorithm
1. Each PE fetches an instruction into its instruction register (IR) and updates its

program counter (PC).
2. Each PE decodes the instruction from its IR.
3. Repeat steps 3a-3c for each instruction type:

(a) Disable all PEs where the IR holds an instruction of a different type.
(b) Simulate execution of the instruction on the enabled PEs.
(c) Enable all PEs.

4. Go to step 1.

called MINTABS. That instruction set is very small (only 8 instructions) and
is far from complete in that there is no provision for communication between
processors, but it did provide basic MIMD execution via interpretation. Our first
MIMD interpreter running on the MasPar MP1 [6] achieved approximately 1/4
the theoretical peak native distributed-memory SIMD speed while supporting a
full-featured shared-memory MIMD programming model.

The simplest method by which a MIMD instruction set can be implemented
using SIMD-based hardware is to write a program that interpretively executes
that MIMD instruction set. Such an interpreter has a data structure, replicated
in each SIMD PE, that corresponds to the internal registers of each MIMD
processor. Hence, the interpreter structure can be as simple as Algorithm 1.
Unfortunately, there are several reasons why such an interpreter might not be
efficient for GPU execution.

1.1 Interpretation Overhead

The most obvious problem is that interpretation implies some overhead for the
interpreter; even MIMD hardware simulating a MIMD with a different instruc-
tion set would suffer this overhead. Although interpreter overhead varies widely,
an order of magnitude slowdown is common.

Fundamentally, step 2 of Algorithm 1 involves the use of something like a C
switch statement to decode each instruction. There are many ways to imple-
ment such a construct. Traditional SIMD machines often have control units that
are capable of efficiently executing “mono” operations that effect all processing
elements. Thus, such machines may be able to use highly efficient mechanisms
like mono jump tables to decode instructions. The NVIDIA CUDA [1] docu-
mentation mentions such an indirect jump instruction, but it was never used
by their compilation system in our testing. Worse still, CUDA apparently uses
a very slow linear sequence of branches to implement switch – so optimized
branch trees can be more appropriate.

In addition, fundamentally, SIMD hardware can only simulate execution of
one instruction type at a time. This implies that the time to interpret an instruc-
tion for each processing element is proportional to the sum of the interpretation

times for each instruction type. Fortunately, there are tricks that can be used to
minimize this effect.

1.2 Indirection

Still more insidious is the fact that even step 1 of Algorithm 1 cannot be executed
in parallel across all PEs in many SIMD computers. The next instruction for each
PE could be at any location in the PE’s memory, and many SIMD machines do
not allow multiple PEs to access different memory locations simultaneously. On
such a machine, any parallel memory access made will take time proportional to
either the number of different PE addresses being fetched from or the size of the
address space which could be accessed. (For example, this is the case on the TMC
CM1 and TMC CM2 [7].) Note that step 3b suffers the same difficulty if load
or store operations must be performed. Because many operations are limited by
memory access speed, inefficient handling of these memory operations easily can
make MIMD interpretation infeasible.

This overhead can be averted only if the SIMD hardware can indirectly ac-
cess memory using an address in a PE register. Examples of SIMD machines
with such hardware include the PASM Prototype [8], MasPar MP1 [4], and the
ClearSpeed CSX [3]. Fortunately, all modern GPUs have this ability, although
random accesses can cause memory bank or cache conflicts. Better still, the tex-
ture memory access facilities can be used to speed-up and remove contention
from indirect access to read-only objects. Textures are particularly appropriate
for instruction fetches.

For current GPUs, objects that can be written – i.e., data objects – have
banking constraints imposed on indirect access. Using ATI CAL [2], there is a
strict “owner writes” policy. NVIDIA CUDA [1] allows random access, but cost
increases by an order of magnitude for accesses that cannot be coalesced into
access of a single line across memory banks. Originally, CUDA GPU coalescing
worked only for access patterns in which each bank is accessed only by its owner;
the latest version allows permutation of owners and banks. In either case, the
result is that better performance can be achieved if the interpreter system is
structured to increase the probability of conformant data access patterns.

One consequence of the banking constraints is a preferred data memory lay-
out of 32-bit datum t like:

datum t mem[NPROC / WARPSIZE][MEMSIZE][WARPSIZE];

in which NPROC is the number of logical processing elements (assumed to be
a multiple of WARPSIZE). One might think that a 2-dimensional layout with
mem[MEMSIZE][NPROC] would suffice, but that would significantly complicate
address arithmetic because NPROC is not necessarily a power of 2 and might not
even be a compile-time constant. In fact, the CUDA compilation system does not
handle the constant power of 2 stride of WARPSIZE*sizeof(datum t) any better,
but explicitly using shift and mask operations on pointer offsets implements the
desired addressing without multiply and modulus operations.

1.3 Enable Masking

The above algorithm assumes that it is possible for PEs to enable and disable
themselves (set their own masks). Although most SIMD computers have some
ability to disable PEs, in many machines it is either difficult to have the PEs
disable themselves (as opposed to having the control unit disable PEs, as in the
PASM prototype [8]) or some arithmetic instructions cannot be disabled because
they occur in a coprocessor, as in the TMC CM2 [7]. In such cases, masking can
be circumvented by the use of bitwise logical operations, e.g. a C-like SIMD code
segment:

where (ir == CMP) { cc = alu - mbr; }
might be implemented by all PEs simultaneously executing:

mask = -(ir == CMP); cc = ((cc & ~mask) | ((alu - mbr) & mask));
which is relatively expensive. This works because the C == operator always
returns the integer value 0 or 1. Notice that, in addition to the bitwise operations,
the above implementation requires a memory access (i.e., loading the value of
cc) that would not be necessary for a machine that supports enable masking in
hardware. Because masking is done for each simulated instruction, the masking
cost effectively increases the basic interpretation overhead. Examples of SIMD
machines whose hardware can implement the appropriate masking include the
TMC CM1, the MasPar MP1 [4], and ClearSpeed CSX [3].

The SIMD variant execution model implemented by GPUs has significantly
more complex support for masking, which offers the potential to dramatically
improve performance. Instead of being a single, relatively wide, SIMD engine,
modern GPUs actually consist of a group of smaller SIMD engines, each appar-
ently processing what NVIDIA calls a “warp” at a time [1]. These narrow SIMD
engines are augmented by scheduling hardware that implements multithreaded
control. In effect, this type of GPU hardware provides three different types of
hardware enable implementation.

Divergent Flow The relatively coarse-grain implementation of enable masking,
the mechanism for handling divergent control flow (as implemented by NVIDIA
CUDA [1]) essentially converts masking into a thread scheduling operation in
which the hardware serializes execution of code for different enable sets. For
example, the body of an if-else statement in which odd numbered processing
elements take the then clause and even ones take the else clause would behave
as though the current warp was divided into two separate warps, each of which
has only half the processing elements enabled. At the point where control flow
rejoins, these merge to create a fully enabled warp.

Predication Rather than treating a conditionally-executed block of instruc-
tions as a schedulable unit, predicated instructions can be used to execute the
code. Predicated instructions are unconditionally executed, but side-effects are
disabled for those processing elements in which the predicate is false. Side effects
include not only writing of results, but also reading of operands. For example, a

false-predicate store to or load from global memory does not cause bank conflicts
[1].

Skipping In the case that no processing element within a “warp” of SIMD
threads is enabled, the scheduler simply will not schedule that warp. This is a
fundamental difference between a many-small-SIMD-engines GPU and a con-
ventional wide SIMD engine. A conventional SIMD machine with 16,384 PEs
will tie-up all 16,384 PEs with code in which only PE 0 is enabled, but a GPU
with a “warp size” (SIMD thread width) of 32 could merely block the resources
of PE 0 through PE 31, with the scheduler skipping the code for all the other
warps. This is a very powerful feature, because it implies that the lowest possi-
ble utilization is 1/32; for example, if there are 500 different instruction types to
interpret, one would expect serialization over all 500 types – but the worst case
would be over 32 types present within a particular warp.

The NVIDIA CUDA environment does not provide direct control over the
choice between different methods for implementing branches or enable masking,
instead automatically selecting based on its own cost estimate. However, we have
implemented pragma that can be inserted (using inline assembly directives) and
then used to control a conversion script we wrote to perform minor rewrites on
PTX code before completing the compilation. For example, one pragma allows
branches that are known to be non-divergent (“mono” branches) to be marked
as such. However, we have not seen large performance improvements by using
this simple PTX-rewriting mechanism.

The remainder of this paper discusses the overall design and implementation
of interpreter-based MIMD On GPU (MOG). Section 2 discusses instruction set
design for the interpreted MIMD system. In section 3, a brief overview of the
programming language and compiler environment is given. Section 4 describes
the assembler for the simulated instruction set. Several versions of the simula-
tor, and performance on a variety of NVIDIA CUDA systems, are described in
Section 5. Conclusions are presented in Section 6.

2 Instruction Set Design

One might expect that the best instruction set to use for the MOG system would
be the native instruction set for the GPU, but that generally is not the case.
The problem comes from the fact that two instructions with the same opcode,
but referencing different registers, are not able to be factored across processing
elements without increasing the decode overhead.

Because they lack explicit operands, stack instruction sets tend to factor
better. However, implementing them is most efficient using indirect addressing,
which register files typically do not support. Using NVIDIA CUDA [1], indirect
addressing of a stack in global memory would be too expensive. Fortunately,
there are alternatives – using a stack in registers or in block shared memory.
The shared memory is not really shared, but provides the indirect addressing
needed to allow factoring; the implementation using registers always keeps the

top of the stack in a specific register and shifts the others up or down as needed.
Either way, the stack is too small, so the proposed model uses a split stack.
The “block stack,” or bstack, is the small fast stack, and objects are explicitly
moved between it and the stack in global memory. Our system also provides the
option of treating a small amount of shared memory or actual registers either as
a register file or a tiny cache.

The remainder of the instruction set architecture is relatively straightfor-
ward, designed to minimize the number of different types of instructions both
statically and dynamically while keeping instructions simple and efficient. For
example, rather than having a relatively rare call instruction, the return address
is explicitly PUSHed on the stack and a JUMP instruction is used to invoke the
routine. The instruction set also avoids having multiple data object sizes. Data
memory is accessed as an array of 32-bit objects, which can be treated as either
integers or floats. Smaller objects are extended and larger objects become tuples
of 32-bit objects. Communication is done using global memory loads and stores.

System calls are implemented by the SYS instruction. Most SYS functions
are actually implemented by performing a barrier synchronization across all SYS
participants, which immediately terminates the current interpreter fragment and
allows host code to handle the call. This mechanism also can be used to invoke
native CUDA code fragments as functions from within an interpreted code.

3 Language and Compiler (mimdc)

Even though the target instruction set architecture is very simple, it was found
to be nontrivial to re-target an existing compiler to generate MOG assembly
code. The problem is that most compilers expect a general-register target, and
the explicit caching of the stack in the bstack was just different enough from
conventional stack manipulation to be awkward for re-targeting from other stack
machine targets. For these reasons, a proof-of-concept compiler for a modest, but
usable, C subset was created from scratch using the PCCTS/Antlr tools.

That C compiler is called mimdc. It is straightforward and does no flow analy-
sis, but does perform a number of simple optimizations based on constructing and
walking expression trees. In addition to the usual constant folding and simplifi-
cations, the compiler performs a number of simple rewrites aimed at increasing
the frequency of specific instructions and idiomatic sequences. Fundamentally,
these rewrites could be viewed as partial normalization of code evaluating ex-
pressions, with the goal of making source code that looks very different yield
highly factorable machine code.

The language accepted by mimdc is a dialect of ANSI C slightly extending
what we implemented for the MasPar MP1 [6]. The dialect supports recursive
functions, pointers, single-dimensional arrays, the usual control-flow constructs,
etc. It also provides a “parallel subscript” lvalue suffix operator for access to
data structures in the memory of any processing element; a[||b] refers to the
variable a on processing element b. In addition, the language accepted by the
compiler includes a variety of intrinsic functions, which correspond to system

calls, so that these operations can be directly coded without the need for a C
interface wrapper.

4 Assembler (mogasm)

It is expected that more complete C and FORTRAN compilers will be re-targeted
to generate MOG assembly code in the near future, thus, having a separate
assembler that can be used with any of the compilers is important. Further,
the simulation system is constructed in such a way so that full MIMD – not
just SPMD – code is permitted. In fact, it is possible to have a completely
different program, even written in various different languages, for each individual
processing element. This feature is implemented by allowing the output assembly
code from each program’s compilation to be merged by the MOG assembler,
mogasm.

Aside from some conditional assembly support intended to facilitate smart
merging of multiple assembly source files and assembly-coded library routines,
mogasm is a fast, but very conventional, multi-pass assembler. The generated
object code consists of a set of data structure definitions including segments
for the program text (machine code) and initialized data; these structures are
directly compiled into a CUDA program to implement the MIMD application as
an ordinary host-executable file. All data is generated as 32-bit objects. However,
the machine code representation is allowed to use 8, 16, or 32-bit objects and
the opcodes and format easily can be changed. As discussed in Section 5.2,
our optimization tools are capable of automatically redefining the instruction
set encoding to minimize the decode overhead – literally creating a new coding
scheme for each MIMD application, if desired. Although the opcode assignments
vary, it appears that a 16-bit opcode with optional 16-bit arguments encoding
generally works best for code. It takes too many 8-bit objects to encode a 32-bit
constant and the NVIDIA CUDA system seems to generate poor code for some
operations on 32-bit opcodes.

5 The Simulator (mogsim)

The MOG simulator, mogsim, is a surprisingly small program. None of the ver-
sions thus far has contained more than 2,500 lines of C and CUDA source code1.
However, the program is not as simple as its small size suggests.

5.1 PE Environment

Figure 1 shows the logical structure of a processing element’s environment for
mogsim. The processing element (PE) itself is a virtual PE. The number of
virtual PEs is not trivially derived from the number of physical PEs, but is
1 Of course, that number does not count the compiler, assembler, and other helper

programs, which embody over 70,000 lines of code.

Fig. 1. MOG Processing Element Structure

computed as a function of the number of SIMD engines, the WARPSIZE, and
various constraints that together determine the optimal degree of multithreading.
Perhaps the most stringent constraint is that there are only 16K bytes of shared
memory per SIMD engine and only 8K or 16K registers, which are divided by
the multithreaded block size.

The bstack resides in what NVIDIA calls block shared memory, but this data
structure is not actually shared. In fact, the bstacks of the various PEs within a
block are deliberately skewed so that apparently consecutive objects on a PE’s
bstack actually have addresses that differ by a multiple of the warp size. In this
way, there are no bank conflicts in referencing the bstack. Block shared memory
is a very limited resource; 7 bstack entries seems to be a practical minimum,
with some trade-off possible between a larger bstack and use of shared memory
for registers and/or a tiny, software-implemented, direct-mapped cache.

In contrast, the stack and data are allowed to be quite large, because they are
kept in an array in what NVIDIA calls global memory. The array is actually part
of the same data structure for all PEs, with a 32-bit object WARPSIZE-strided
layout (as described in Section 1.2) in order to ensure accesses to “local” PE
memory are free of bank conflicts. The text segment is a texture map of 16-
bit objects. All MIMD code for any PE is placed in the text segment with a
simple contiguous layout. Not shown in Figure 1 are the PE internal registers
including program counter (pc), stack pointer (sp), block stack pointer (bsp),
and instruction register (ir).

5.2 Interpreter Structure

The mogsim interpreter is implemented on the GPU by a single function called
emulate(). This function’s fragment is not called just once, but repeatedly until
the MIMD program has terminated, each time executing some fixed maximum
number of interpreted instructions. This was done partly because GPUs impose
a timeout in order to terminate errant fragments of code. However, the develop-
ment machines are running an X windows display at the same time as the MIMD
simulation, and system crashes and lock-ups were observed when codes were al-
lowed to run for even a modest portion of the theoretically allowable maximum
fragment time. Thus, we empirically determine a maximum safe interpret count

per invocation of emulate() for each target system and use a register variable
called serial to count. Unless executing in trace mode, only a short vector of
status information is transferred from the GPU to the host to determine if the
MIMD code is requesting a system function when a fragment ends. Currently,
the primary system function is exit().

Within the interpreter, there are a number of tricks that could be used to
improve execution speed. Some of these tricks apply only to certain types of
interpreter structures, and there are a variety of approaches possible. Many
variations were implemented and evaluated; only a few are reported here.

Sequence of Single-Instruction Subinterpreters (SIS) Nilsson and Tanaka
[9] envisioned a set of subinterpreters such that each subinterpreter emulates
only a single type of instruction and all subinterpreters are executed once per
interpreter cycle. Before entering the loop over all subinterpreters, the first in-
struction is fetched. The main loop decodes each type of instruction in sequence
and, if any PE wants to execute that instruction, the operation is performed and
the next instruction is fetched. Decoding can be as simple as comparing the ir
to the desired opcode. This type of interpreter is easily implemented, and has
been used for Genetic Programming on a GPU [10].

However, using program coding and/or execution statistics, Nilsson and Tanaka
[9] pick an order for the subinterpreters that is intended to maximize the ex-
pected number of instructions executed per processor per interpreter cycle. For
example, given that the subinterpreters are in the order PUSH, LD, ADD then the
instruction sequence PUSH, LD, ADD would take only one cycle – but LD, PUSH, ADD
would take 2 cycles and ADD, LD, PUSH would take 3. In our earlier work target-
ing the MasPar MP1 [11], which used a fundamentally different approach, one of
the techniques used was “frequency biasing” in which expensive operations were
deliberately made to execute less frequently. Abu-ghazaleh et al. [12] later in-
tegrated this idea with the single-instruction subinterpreter sequencing concept
by allowing subinterpreter sequences that do not incorporate all instructions in
every interpreter cycle.

Our GPU implementation uses statistics collected from one or more traced
MIMD application program runs to determine execution frequency of both in-
dividual instructions and instruction digrams. A fixed-length sequence of single-
instruction subinterpreters is automatically constructed. The number of times
the subinterpreter for a particular instruction occurs in that sequence is at least
1, but otherwise mimics the expected runtime frequency of occurrence of that
individual instruction. A modified evolutionary search is then used to optimize
the order of the subinterpreters so that the digram-frequency-weighted average
span between subinterpreters for instructions appearing in each digram is mini-
mized. For example, using 64 subinterpreters to cover the 37 instruction types, a
random ordering usually has a weighted average span greater than 15 – meaning
that at runtime an average of at least 15 subinterpreters would be attempted be-
fore executing a subinterpreter for the next instruction. The optimizer typically
reduces that number to between 4 and 6.

It is useful to again note that this type of interpreter structure requires
neither communication nor sophisticated control flow. Thus, with the poten-
tial change of implementing each subinterpreter (or short sequence of subinter-
preters) as its own code fragment, this type of interpreter can be executed on
nearly any GPU. For example, this could be implemented using ATI’s Stream
model [2], OpenCL [13], OpenGL [14] or DirectX [15] fragment code, etc.

Selection of a Present Instruction to Interpret (SIR) The shared memory
implemented by CUDA GPUs suggests that it would be practical to interpret a
single instruction each cycle which is selected from those instructions currently
present in some PE’s ir.

The first step is to fetch the current instruction for each PE into its instruc-
tion register, which is accomplished by a 1D texture fetch. In order to have all
processing elements within a warp agree on the instruction to process this cycle,
one processing element (thread) is selected from each warp and its instruction is
used. In our system, NPROC is the total number of PEs and IPROC is the number
of this PE in the range 0..(NPROC-1); BNPROC and BIPROC are the same concepts,
but for execution within a block. Thus, by selecting the thread whose processing
element number within its warp is equal to the interpreter cycle serial num-
ber modulus the warpsize, round-robin scheduling is implemented. The store
into *sharedsir is a trivially conflict-free operation on block-shared memory
because only one thread in each warp is enabled. Reading back the value into
the sir register in each thread is essentially a broadcast within the warp, with
implicit synchronization. The selected instruction type is executed by all PEs
in which the ir held the same type of instruction. The result is that all PEs
are ensured to make fair progress, and the decoding of the instruction in sir
is essentially “mono” (control unit) code that can never diverge. This allows
instruction decoding to be implemented by highly efficient O(1) methods, such
as an indirect jump based on the opcode value.

The primary advantages for this approach are fairness and the fact that the
cost associated with instructions that no PE currently wants to execute can be
essentially zero, suffering neither decode nor enable masking overhead. Although
Abu-ghazaleh et al. [12] and others argue that with large numbers of PEs every
instruction type should be requested by some PE in every cycle, our earlier work
using a 16,384 PE MasPar MP1 [6] found that many instruction types did not
occur for many instruction cycles, and with a warpsize of 32 and 37 instruction
types, it is literally impossible that all instruction types occur within a warp.

Unfortunately, as mentioned in Section 1.1, the CUDA environment imple-
mented switch as a linear sequence of tests and predicated branches, making
decode cost dependent on the ordering of cases and significantly higher than it
logically should be. In order to improve decode speed, a helper program was
built to generate a binary decode tree using if statements, but again the CUDA
environment created inefficient code – in fact, there was virtually no timing dif-
ference between the non-divergent decode trees and a well-ordered switch. This

order dependence spawned the idea of making the decode tree have a variable
depth, shallow for common operations, deeper for others.

The basic concept we use is essentially building an if decode tree with the
same type of structure used for Huffman coding [16], although the frequency
weightings in the interpreter decode tree are optionally adjusted to also pre-
fer cheaper decoding for instructions that execute faster. Our system uses in-
struction frequency measurements (as discussed in Section 5.2) to automatically
create the Huffman-like decode tree and to modify the assembler (see Section
4). The opcodes are remapped so the decode tree can use a simple “less than”
comparison operation per level.

Divergent Factored Decoding (DFD) Ironically, although NVIDIA fre-
quently warns of the performance hazards associated with divergent control flow,
the overhead associated with it seems significantly less than the decode overhead
of Section 5.2’s SIR method without indirect jumps. Changing the above method
to directly use the ir instead of sir, we create an interpreter structure that tends
toward significant divergence, but partially factors the traversal of the decode
switch or tree across instructions.

Subinstruction Factoring using CSI (CSI) The most effective method for
the MasPar MP1 [4][6] factored-out portions of the process of interpreting an
instruction across the various types of instructions present. For example, all
binary stack operations fetch the top-of-stack (TOS) and next-on-stack (NOS)
values, store a new result into the NOS, and then adjust the stack pointer.
Thus, with an instruction set encoding designed to expose such commonality,
it is possible to execute the bulk of the interpreter overhead for multiple types
of instructions simultaneously, only masking the portions that distinguish the
specific instructions.

In this algorithm, the code still begins by fetching the current instruction –
and this is the only place in the interpreter loop in which the current instruction
is fetched. The following steps do not execute an entire instruction at a time,
but rather correspond to factoring-out the common parts of the “microcode” for
each instruction and controlling execution of each “microinstruction” individu-
ally. More precisely, the factoring to which we refer involves application of an
algorithm called Common Subexpression Induction (CSI) [17] to find and/or cre-
ate the maximally beneficial set of common subexpressions among the microcode
operations. For example, extracting an argument from the instruction stream
can be factored-out for all instruction types that use an argument. Similarly,
update of the block stack pointer can be done just once with the appropriate
instruction-type-dependent adjustment.

This technique has the theoretical advantage that it maximally shares over-
head for common microinstructions. One issue is that, because CSI tends to
separate-out portions of an instruction, it naturally tends to increase the amount
of state that needs to be held within the GPU. CSI execution also involves a lot of
conditionals which, as we have discussed earlier, are not necessarily handled well

Table 1. Benchmark System Configurations

Feature “Laptop” “Desktop1” “Desktop2” “Desktop3”

Host Processor Intel T8300 AMD 4200+ Intel 920 AMD 4200+

NVIDIA GPU (CC) 8600M GT (1.1) 8800 GTS (1.0) 9800 GT (1.1) GTX 280 (1.3)

GFLOPS: Host/GPU 9.2 / 91.2 10.5 / 345.6 21.36 / 544.3 10.5 / 933

Power: Host/GPU 35 / 22 89 / 146 130 / 125 89 / 236

GPU Cores/PEs 32 / 1,024 96 / 2,304 112 / 3,584 240 / 10,560

Best Time: perf/fact 9.63 / 10.55 7.77 / 7.7 6.66 / 7.2 8.33 / 9.76

by the current NVIDIA CUDA environment. This approach also suffers from
serialization of all the conditional tests, which is a more severe problem than
it was for the SIR and DFD methods – because here there are more separate
conditions to be tested. A large portion of the conditional tests can be factored
using the ordering optimizations discussed for SIR (Section 5.2).

5.3 Performance

The performance evaluation reported in this paper centers on determining how
effective each of the interpretation approaches is under various conditions and
how large a performance penalty is incurred for support of a full-featured shared-
memory MIMD programming model as compared to directly using the relatively
restrictive SIMD-based native model for a GPU.

The most direct comparison possible would be performance of native CUDA
code relative to that of a MIMD program, which implements precisely the same
algorithm, with no program logic that would force different PEs to be execut-
ing different code simultaneously. For this purpose, we created a simple bench-
mark, perf, in which each virtual PE executes a tight loop containing 1,000,000
floating-point multiply-accumulate operations. It was specifically created to be
a “worst case” CUDA-compatible benchmark for the MIMD environment – for
example, mogsim does not implement multiply-accumulate as a single instruc-
tion as native CUDA does. A second benchmark code was created to determine
the relative performance of each of the alternative interpretation methods when
processing a MIMD program that makes extensive use of features CUDA does
not support. This code, fact, involves each virtual PE performing 10,000 integer
factorial operations using the usual recursive function. Inside of a loop, different
PEs are deliberately given different factorials to compute, ranging from 0! to 21!,
causing PEs to diverge quickly both across and within blocks and warps.

Performance Across Various GPUs One might expect a strong bias favor-
ing, or even a requirement of, one of the higher-levels of “compute capability”
(CC) among the machines listed in Table 1. However, none of the interpreters
requires any features that did not exist in CC 1.0. Later versions do perform
slightly better in that they relax the rules for coalescing memory references and
may have more registers, but these differences are incremental for both perf

Fig. 2. Performance for Different Warp Counts (perf and fact) on “Laptop”

and fact. The primary improvement seen is that more work can be done in
about the same time on systems that allow more virtual PEs. Executing the
exact same program logic as perf, but coded as native CUDA code, takes 1.46
seconds using the “Laptop” system benchmarked above with 8 warps per SM
(1,024 virtual PEs) – thus, our worst-case slowdown for the best interpretation
method is only about 6.6X native. Using the SYS instruction mechanism within a
MIMD interpreted program to call native CUDA code (as mentioned in Section
2) has an overhead of about 0.025 seconds per invocation. Thus, if one recog-
nized that perf could be rewritten as native code and invoked it using the SYS
mechanism from within a MIMD program, the slowdown in using the MIMD
interpreter would be just 1.7%.

The recursive fact benchmark is effectively infinitely faster than native
CUDA code, because CUDA supports neither recursion nor a sufficient number of
simultaneous (or timesliced) instruction streams. One might think implementing
only a few of the MIMD features on top of CUDA without an interpreter might
yield much better performance, but just making native CUDA code “interupt-
able” at each global store resulted in a 4X slowdown [18] – mogsim is inherently
interuptable at every instruction with no more than a 6.6X slowdown.

Performance of Different Interpretation Methods Figure 2 shows the
results of trying all possible numbers of warps per SM for 11 different types of
interpreters on the “Laptop” target system using as many blocks as there are SMs
(in this case, 4). The basic methods correspond to those discussed in Sections
5.2 (“sis”), 5.2 (“sir”), 5.2 (“dfd”), and 5.2 (“csi”). The variants prefixed with
“opt” use an order-optimized decode method instead of a fixed-depth decode
tree – Huffman trees or ordered switch statements (if suffixed with “sw”). The
number of warps was constrained primarily by the small number of registers
available in the hardware, which hardware assigns in groups of 8; most of the
interpreters used just 31 or 32 registers, except for variants using CSI, which

needed 34. Although the figure shows data only for the “Laptop” target, similar
performance trends were seen on all the GPU targets.

The first observation one should make is that adding warps extends execu-
tion time very little while significantly increasing the work done; the highest
performance always is achieved running the maximum number of warps per SM
that the hardware will allow. For “Laptop” this means a total of 4*8*32 virtual
processors, or 1,024 threads. It even seems that scheduler noise is higher for
small numbers of warps, perhaps because the benchmark system was using the
same GPU for computation and the primary X windows display. Other tasks
may have cut-in, especially during some of the 2 and 3 warp runs of fact.

It also is clear that different interpreters handle SIMDish and highly divergent
MIMD code with differing relative efficiencies. The “opt sis” method is the fastest
for highly irregular MIMD code, whereas “opt dfd” is fastest for MIMD code with
lower entropy. Although “sis” is terrible, the “opt sis” method does consistently
well; it is only about 9% slower than “opt dfd” for the minimally-divergent code.
The most consistently good performance is delivered by the “sir” variants, and
“sir” itself is the overall best performer if it is required that the same instruction
encoding and interpreter structure must be used for all MIMD programs. That
said, “sir” was 24% slower than the best for perf and nearly 41% slower for
fact. Interestingly, this version of “sir” is approximately an order of magnitude
faster than the original version of “sir,” which was the only MIMD interpreter
demonstrated in our research exhibit at the SC08 conference last year.

6 Conclusion

In this first published paper on MIMD On GPU (MOG) interpretation, we have
provided an overview of the motivation, general approach, and major implemen-
tation issues involved. Extensive optimization of various interpreter approaches
was undertaken, incorporating a wide range of insights. The toolchain was de-
signed to keep complexity out of the compiler; complex analysis and transforma-
tion all happens in the assembler and below, including automatic use of evolu-
tionary computing to optimize the interpreter structure and instruction encoding
based on data from test runs.

The results clearly show that MIMD interpretation is a viable method for
high-performance computing, at least on a wide range of NVIDIA CUDA GPUs.
Worst-case slowdown for code that could have been written in native CUDA is
only 6.6X and, in such a case, the system would allow native code to be called
as a function reducing overhead to less than 2%. Wildly dynamic MIMD code,
including recursion, also works with apparently good efficiency.

The toolchain is expected to become a public domain source code release as
soon as it has reached an appropriate level of usability and stability.

References

1. NVIDIA, “NVIDIA CUDA compute unified device architecture programming
guide version 1.0,” June 2007.

2. ATI, “ATI stream SDK user guide v1.3-beta,” December 2008.
3. ClearSpeed, “ClearSpeed whitepaper: CSX processor architecture,” ClearSpeed

Technology plc, vol. PN-1110-0702, 2007.
4. T. Blank, “The maspar mp-1 architecture,” 35th IEEE Computer Society Interna-

tional Conference (COMPCON), February 1990.
5. P. Wilsey, D. Hensgen, C. Slusher, N. Abu-Ghazaleh, and D. Hollinden, “Exploiting

simd computers for mutant program execution,” Technical Report No. TR 133-11-
91, Department of Electrical and Computer Engineering, University of Cincinnati,
Cincinnati, Ohio, November 1991.

6. H. G. Dietz and W. E. Cohen, “A massively parallel mimd implemented by SIMD
hardware,” Purdue University School of Electrical Engineering Technical Report
TR-EE 92-4, p. 28 pages, January 1992.

7. Thinking Machines Corporation, “Connection machine model cm-2 technical sum-
mary, version 5.1,” May 1989.

8. H. Siegel, W. Nation, and M. Allemang, “The organization of the PASM: Recon-
figurable parallel processing system,” in Ohio State Parallel Computing Workshop,
pp. 1–12, March 1990.

9. M. Nilsson and H.Tanaka, “MIMD Execution by SIMD Computers,” in Journal of
Information Processing, Information Processing Society of Japan, vol. 13, no. 1,
pp. 58–61, 1990.

10. W. B. Langdon and W. Banzhaf, “A SIMD interpreter for genetic programming on
GPU graphics cards,” in Proceedings of the 11th European Conference on Genetic
Programming, EuroGP 2008 (M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia
Alcazar, I. De Falco, A. Della Cioppa, and E. Tarantino, eds.), vol. 4971 of Lecture
Notes in Computer Science, (Naples), pp. 73–85, Springer, 26-28 Mar. 2008.

11. H. G. Dietz and W. E. Cohen, “A control-parallel programming model implemented
on simd hardware,” Languages and Compilers for Parallel Computing, edited by
U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Springer-Verlag, New York,
New York, 1993.

12. N. B. Abu-ghazaleh, P. A. Wilsey, X. Fan, and D. A. Hensgen, “Synthesizing
variable instruction issue interpreters for implementing functional parallelism on
SIMD computers,” IEEE Transactions on Parallel and Distributed Systems, 1997.

13. Khronos OpenCL Working Group, “The OpenCL specification version 1.0,” De-
cember 2008.

14. B. L. et. al., “Arb fragment program,” OpenGL Extension Registry,
vol. http://oss.sgi.com/projects/ogl-sample/registry/ARB/fragment program.txt,
Aug. 2002.

15. Pixel Shader Reference, “http://msdn.microsoft.com/archive/default.asp?
url=/archive/en-us/dx81 c/directx cpp/graphics/reference/shader/pixel/
pixel.asp.”

16. D. A. Huffman, “A method for the construction of minimum-redundancy codes,”
Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

17. H. G. Dietz, “Common subexpression induction,” 1992 International Conference
on Parallel Processing, Saint Charles, Illinois, vol. II, August 1992.

18. Q. Hou, K. Zhou, and aining Guo, “Debugging gpu stream programs through
automatic dataflow recording and visualization,” May 2009.

