
Memories

EE685, Fall 2022

Hank Dietz

http://aggregate.org/EE685

http://aggregate.org/EE685

What we want, what we have

• What we want:
• Unlimited memory space
• Fast, constant, access time

(UMA: Uniform Memory Access)
• What we have:

• Memories are getting bigger
• Growing complexity memory hierarchy
• Temporal and spatial locality issues

(NUMA: Non-Uniform Memory Access)

Memory speed hasn’t kept up

• Pre-1970s memory faster than processor...

• Now thousands of times slower to access

Multi-core processor chips

• E.g., Intel Core i7 generates up to 2 refs/clock
for each of 4 cores @ 3.2GHz

– 25.6G 64-bit data refs/s
– 12.8G 128-bit inst. refs/s

Total 409.6GB/s… but DRAM is 25GB/s!
• Multi-port pipelined cache
• Multiple levels of caching
• Logic to support sharing
• Large fraction of area & power budget

Terms

• Cache line: one block of data in cache
• Dirty line: a block with value different from that

block in lower memory levels
• Hit: data found here
• Hit rate or hit ratio: # hits / # references total
• Hit time: RAM access time + check hit/miss
• Miss: data not here, must forward read request
• Miss rate: # misses / # references total
• Miss penalty: time to replace line & deliver data

Basic cache design issues

• Placement (mapping)
• Identification:

which line within the set do I want?
• Replacement policy:

which line gets kicked-out to make space?
• Write strategy

Placement / Mapping

• Caches are basically hash tables indexed by
hash value of the address requested

• Direct mapped:
Each bucket holds one line

• Set associative:
Each bucket holds set-size lines

• Fully associative:
Only one bucket, which holds all lines

Mapping Addresses
• Each address is {line number} {byte offset in

line}; 32B line [4:0] are → offset
• Cache set (bucket) index is hash({line number}),

often contiguous bits from {line number}
• Line tag field holds bits of {line number} that

are not implied by bucket index

E.g., a 4-way 16KB cache might be:
512 lines, each 32B long, with 128 buckets
Address[4:0] is offset, [11:5] is bucket index

Best replacement policy?
• Direct mapped → no choice
• Random
• Replace a clean (not dirty) line
• LRU (Least Recently Used): mark when line

is accessed, replace not accessed recently
• LFU (Least Frequently Used)
• MRU and MFU: Most “”
• Belady’s MIN: replace line not used for the

longest time in the future (how to know this?)
• Compiler-driven; e.g., using cache bypass

Best replacement policy?

• Sample comparison of LRU vs. Random
• Miss rate %:

LRU Ran LRU Ran LRU Ran
Size 2-way 4-way 8-way
16KB 5.2 5.7 4.7 5.3 4.4 5.0
64KB 1.9 2.0 1.5 1.7 1.4 1.5
256KB 1.15 1.17 1.13 1.13 1.12 1.12

Write strategy

• Write through
– Write always goes to main memory
– Easy; needed for I/O devices in memory

• Write back
– Write only when line replaced, saving traffic
– Could do lazy writes when not busy
– May need to read on miss to get rest of line

• Write allocate: write back, but don’t wait for
line to be read first; aka pre-arrival caching

Write Buffer

• Sort-of like a “level 0 data cache”
(faster because no TLB in front of it)

• Buffer can re-group writes to form write to a
larger fraction of a line (not just one byte or
word)

• Need to be careful about task switches, etc.;
may have to flush write buffer often

What causes a miss?
• Compulsory

– Never touched this block before
– Shared fetch effect can avoid these when

another process touches what I want first
• Capacity

– Could have been from cache, but didn’t fit
• Conflict

– Could have fit, but cache mapping had a
conflict with another line that caused this
line to be replaced (e.g., direct mapped)

Cache optimizations

• Larger total cache size
– Fewer capacity & conflict misses
– Dumber replacement policy works ok
– Increases hit time, die space, and power use

• Larger line size
– Fewer compulsory misses (spatial locality)
– More capacity & conflict misses
– Increases miss penalty (block transfer time)

More cache optimizations

• Higher associativity
– Reduces conflict misses
– Increases hit time & power use

• More levels of cache
– Smaller, faster, upper-level caches
– More complex hardware structure

Still more cache optimizations

• Priority to read misses over writes
– Reduces miss penalty
– Modest increase in design complexity

• Avoiding address translation before indexing
– Reduces hit time
– Not what operating systems expect
– Frequent cache flushes or need PID tags

Advanced cache optimizations

Small & simple L1 caches

• Critical timing path is
Access tags compare tags select line→ →

• Direct-mapped can overlap tag compare with
transmission of line data

• Lower associativity reduces power
(fewer comparators, narrower data access)

Advanced cache optimizations

Small & simple L1 caches

Access time vs. L1 size and associativity

Advanced cache optimizations

Small & simple L1 caches

Read energy vs. L1 size and associativity

Advanced cache optimizations

Way prediction

• Used in MIPS R1000, ARM Cortex-A8
– Helps where tag compares are serialized
– Mispredict increases hit time
– Accuracy >90% for 2-way, >80% 4-way
– Inst. cache more predictable than data

• Way selection predicts line data and tag

Advanced cache optimizations

Pipelined cache

• Improves bandwidth
• Easier to do higher associativity
• Branch mispredict time increases
• Examples:

Pentium was 1 cycle
Pentium Pro – III were 2 cycles
Pentium 4 – Core i7 are 4 cycles

Advanced cache optimizations

Non-blocking cache

• Allows hits before previous misses complete
– “Hit under miss”
– “Hit under multiple miss”

• Required for L2 caches
• Processors can’t hide L2 miss penalty

Advanced cache optimizations

Non-blocking cache

Advanced cache optimizations

Multi-banked cache
• Fragment cache into independent banks

– ARM Cortex-A8 supports 1-4 banks of L2
– Intel i7 supports 4-bank L1, 8-bank L2

• Banks commonly interleave on low bits of
line address (sequential interleaving):

Advanced cache optimizations

Critical word first

• Requested word in line is fetched first
• Requested word is returned immediately upon

arrival at the cache – don’t wait for full line
• Other words of line fetched in some order
• Can use rotated order

– Start at word k, ith fetch is (k+i)%n
– Sort-of like assuming sequential prefetch

Advanced cache optimizations

Early restart

• Requests words in normal order
• Requested word is returned immediately upon

arrival at cache – don’t wait for full line
• Potentially simpler than critical word first,

probably not as effective…

Advanced cache optimizations

Merging write buffer
• This is the write buffer described earlier…

essentially a FIFO of lines
• Does NOT always treat write buffer as a FIFO

– Each line tracks which fields are “present”
– Collects word writes into the same line entry
– I/O addresses must still be FIFO

• Increases effective size of write buffer
• If entire line is present, cache doesn’t need to

read the missing parts

Compiler optimizations

Linker optimization

• Changing link order can change caching by
changing which addresses conflict in cache
– If f() calls g(), different buckets for f() and g()
– Profiling to detect conflict pattern

• Same idea can be used to pick addresses for
data structures

Compiler optimizations

• Restructure code to change data access pattern
– Group data (data layout)
– Reorder accesses (loop transformations)

• Prevent cache pollution
– Why cache what you get from a register?
– Often double-map: cache / bypass

• Avoid saving data that isn’t used again

Compiler optimizations

Merging/splitting arrays
• Array elements accessed together can be

grouped together to enhance spatial locality
• Also separate those not accessed together

E.g., suppose a[i] and c[i] accessed together:

int a[N], b[N], c[N];
struct { int a, b, c; } abc[N];
struct { int a, c; } ac[N]; int b[N];

Compiler optimizations

Loop interchange
• Loop nest traversal order matches data layout
• Improves spatial locality

E.g., if a[0][0] is next to a[0][1]:

for (i=0; i<N; ++i)
 for (j=0; j<M; ++j) a[i][j] = 0;
for (j=0; j<M; ++j)
 for (i=0; i<N; ++i) a[i][j] = 0;

Compiler optimizations

Loop fusion
• Fuse loops that work on similar data
• Improves spatial locality

for (i=0; i<N; ++i)
 for (j=0; j<M; ++j)
 a[i][j] = b[i][j] + c[i][j];
for (i=0; i<N; ++i)
 for (j=0; j<M; ++j)
 d[i][j] = a[i][j] * c[i][j];
for (i=0; i<N; ++i)
 for (j=0; j<M; ++j) {
 a[i][j] = b[i][j] + c[i][j];
 d[i][j] = a[i][j] * c[i][j]; }

Compiler optimizations

Loop blocking/stenciling

• Iterate in pattern that maximizes reuse

for (i=0; i<N; ++i)
 for (j=0; j<N; ++j) {
 r = 0;
 for (k=0; k<N; ++k)
 r += y[i][k] * z[k][j];
 x[i][j] = r; }

Compiler optimizations

Loop blocking/stenciling

• Iterate in pattern that maximizes reuse

for (jj=0; jj<N; jj+=B)
 for (kk=0; kk<N; kk+=B)
 for (i=0; i<N; ++i)
 for (j=jj; j<min(jj+B,N); ++j) {
 r = 0;
 for (k=kk; k<min(kk+B,N); ++k)
 r += y[i][k] * z[k][j];
 x[i][j] += r; }

Prefetching
• Software (by compiler)

– Hoist load to earlier position in program
– Suggest hardware load into cache

• Hardware
– Assume or recognize reference pattern

and request expected next early
– Line +/-1, strided, other patterns

• Works better for instructions than data
• Generally can abort a prefetch to cache,

Prefetches can’t fault (no exceptions)

Prefetching

• Fetch line and next line on a miss (Pentium 4)

Consistency Models

• The volatile keyword in C/C++ gives
potential memory order constraints

• Strict: everybody sees result at next tick
• Sequential: everybody sees things as if

they happened in a sequential order
• Weak Ordering: memory barriers/fences

force ordering of before vs. after

Cache Coherence
• How one maintains consistency
• What to do when something writes?

– Invalidate: mark/discard old entries
– Update: use the write data to update

• Who to notify?
– Snooping: everybody watches
– Ownership: only talk to owner
– Directory: permissions, who to notify

• MESI Protocol: Modified (dirty), Exclusive,
Shared (clean), Invalid – 4 line states

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

