
Better Pipeline Management

EE480, Spring 2016

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

References

• Chapter 3 of Computer Architecture,
A Qauantitative Approach, 5th edition

• JILP Championship Branch Prediction,
http://www.jilp.org/cbp2014/

• http://nathantypanski.github.io/tomasulo­simulator/

• The course WWW site:

http://aggregate.org/EE480/

Remember EE380?

• Pipelined design based on single-cycle design
• Basic design issues

– Structural hazards
– Data dependence issues
– Control flow dependence

• Discussed VLIW, SuperScalar, EPIC ideas,
but never got into how that stuff really worked

Basic Blocks

• A Basic Block is a region of code which has a
single entry and single exit, such that any time
the block is entered, all instructions will be
executed before exiting – i.e., NO control flow

• How big is a typical basic block?
Can be huge, often as small as ~5 instructions

• Need to work across basic blocks to get more
Than ~5 instructions executing in parallel!

Bigger Basic Blocks?

• Compiler technology can make blocks bigger
(we'll talk more about this a little later)
– Loop unrolling, unraveling, strip mining
– Code hoisting and other code motions
– Trace scheduling

• Can we make hardware able to look across
basic blocks without compiler restructuring?

Control Dependences

• Two flavors:
– Branch takes an extra cycle to compute the

target address from the immediate offset
– Conditional branch/jump/skip/call/return does

not decide taken/not-taken early enough
• BTB largely solves the first problem…
• Branch prediction tries to solve the second

Branch Prediction Methods
• Always pad with NOPs
• Predict not taken – easy, right for many forward

branches such as then clause of a typical if
• Predict taken – harder (need BTB), right for

backward branches in loops
• Predict forward not, backward taken
• Predict BOTH taken and not (e.g., Pentium Pro)
• Compiler marks instructions as usually taken,

usually not taken, or don't know
• Use history (BHB) to predict future behavior

BHB Concepts
• Can encode either history or prediction state

(remember that 4-state branch predictor?)
• Two types of history recorded:

– History of this particular branch
(a function of address of branch instruction)

– History of last K branches from anywhere
• Can have many component predictors…

– Both types of history can be used
– Weighted scoring of which one is best now

(i.e., a tournament predictor)

Other Control Flow Tricks
• Branch folding: both target address and a copy

of the instruction there go into BTB – can save
a fetch cycle

• Can remember likely indirect branch targets
• Return address predictor: create an internal

stack to predict where return will go
• Instruction prefetch: issue fetches early to hide

Memory latency
• Fetch blocks of instructions and extract (e.g.,

match idiomatic instruction sequence at a time)

Pipeline Scheduling
• Static scheduling:

Instructions execute in the (partial) order
Determined & specified by the compiler

• Dynamic scheduling (out-of-order execution):
Instructions behave as if they executed in order,
but hardware re-arranges to minimize bubbles

• Static is simpler (precise exceptions), etc.
• Dynamic can know about microarchitecture and

precise run-time dependencies
• Best performance combines static + dynamic

Von Neumann vs. Dataflow

Do instructions chase data or vice versa?

Dependence Analysis
(from EE380)

• Use or R: reads the value bound to a name
• Def or W: binds a new value to a name
• True dependence: carries a value, D U, → RAW
add $t0,$t1,$t2 or $t3,$t0,$t4

• Anti-dependence: kills a value, U D, ← WAR
add $t0,$t1,$t2 or $t1,$t3,$t4

• Output dependence: kills a value, D D, → WAW
add $t0,$t1,$t2 or $t0,$t3,$t4

CDC 6600 Scoreboard

• Enables dynamic scheduling with both
OOO execution and OOO completion
– Instructions proceed when dep. Are met
– WAR completion: stall W until instruction

has read the operands (force program order)
– WAW: must detect hazard & stall in decode
DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F8,F8,F14

Scoreboard Stage 1:
Issue (ID1)

• Decode instruction, check for structural hazards

– Stall all issues if this instruction is a WAW
with any W in the machine

– If there is a free function unit, issue the
Instruction there & record in scoreboard

Scoreboard Stage 2:
Read Operands (ID2)

• Wait until no data hazards, then read operands

– Can read operand if either:
• No RAW on the operand with W in an

instruction issued earlier
• RAW is writing now

– Implements OOO and/or parallel execution

Scoreboard Stage 3:
Execution (EX)

• Perform the operation on the operands

– Notifies the scoreboard when done...

Scoreboard Stage 3:
Write Back (WB)

• Finish execution, write result back to register

– If an earlier instruction is a RAW for this W,
stall here

Scoreboard Structure

• Instruction status: which stage is it in?
• Function unit status:

– Busy?
– Operation to perform (opcode)
– Dest & Src registers: Fi, Fj, Fk
– Function units that produce Fj, Fk are Qj, Qk
– Are Fj, Fk ready: Rj, Rk

• Register status: which function unit writes this?

Scoreboard Summary

• Only works one one basic block at a time
• Small number of functional units makes

structural hazards common – no OOO for
instructions to same function unit

• Waits for WAR hazards (after EX, before WB)
• Prevents WAW hazards (in ID)
• Still gave good speedup for CDC 6600:

1.7X compiled code, 2.5X hand-written code

Why Tomasulo Instead?

• Scoreboard is centralized;
Tomasulo uses distributed Reservation Stations

• Reservation stations effectively implement
register renaming to avoid WAR, WAW hazards

• Scoreboard must read both sources together
• Common Data Bus (CDB) broadcasts results

to all function units
• Load and store queues are function units too

Reservation Station Structure
• Busy?
• Operation to perform: Op (which is not FU)
• For each source operand j, k:

– Reservation station producing it: Qj, Qk
– Ready flag: Rj, Rk (separately ready)
– Value of the operand: Vj, Vk

• Also tracks address for load/store

• Register result status: which FU has a pending
write to each register?

Tomasulo Stage 1: Issue

• Issue an instruction

– If an RS is available, issue next instruction
from FIFO instruction queue to it

Tomasulo Stage 2: Execute

• Execute the operation

– If CDB value is for one of our operands,
save the value in V and set R

– Use the FU when:
• All earlier branches have completed
• Load/store ordering of matching addresses

would be preserved
• All operands (Rj, Rk) are ready

Tomasulo Stage 3: Write Result

• Send results everywhere they need to go

– Write the result into CDB, which goes to:
• Reservation stations waiting for it
• Destination register
• Store buffers waiting for it

– Stores wait for both address & value

Tomasulo vs. Scoreboard

• Issues when RS vs. FU free
• Reads operands from CDB/reg vs. reg

(i.e., it implements a form of reg renaming &
doesn't need both operands simultaneously)

• Write values to CDB vs. reg
• WAW and WAR are not hazards
• Instructions completing/cycle 1 vs. k
• Instructions start executing/cycle k vs. 1

So, Do Modern Designs Use
Scoreboard Or Tomasulo?

• No. :-)
• Many modern architectures explicitly rename

registers… which is actually how most
compilers do the equivalent analysis:
– SSA: Static Single Assignment
– Each potentially unique value gets a unique

temporary (register) name

Speculative Execution

• Allow instructions to start executing along the
predicted control flow path(s) before we know

• What to do if prediction was wrong?
– Undo the side-effects (usually hard)
– Buffer side-effects: don't commit them

• Requires some extra hardware…

Reorder Buffer (ROB)

• Where not-yet-committed things are held
• Each entry describes instruction, destination,

value computed, and instruction status
(completed? exception happened?)

• Tomasulo could use ROB, instead of CDB…
• Mispredict discards ROB entries
• Confirmed prediction commits

– Writes to memory, registers (accept rename)
– Process exceptions (precisely!)

Multiple Issue

• Can't get CPI<1 unless >1 instruction/cycle
• Must effectively fetch >1 instruction/cycle

– Use VLIW/EPIC horizontal coding
(multiple instructions per instruction parcel)

– Decode and group multiple individually-
encoded instructions (Superscalar)

– Use SWAR (SIMD Within A Register)
– Use LARs (Line Associative Registers)

• Compiler always “stacks the deck”

SWAR Static Primarily Mostly Implicit by compiler MMX, SSE, …
 software static AVX, GPUs

Decoupling Instruction Fetch

• Processor internals are really dataflow
• Isolate processing from instruction fetch

– Some processors use decoupled instruction
fetch engines (CSPI array processors, P4)

– Barrel Processing / Multithreading:
instructions don't have to come from just one
PC or process (Denelcor HEP, Tera MTA,
Intel Hyperthreading)

– SIMD virtualization (TMC, ATI/AMD, NVIDIA)

