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What we want, what we 
have

• What we want:
• Unlimited memory space
• Fast, constant, access time

(UMA: Uniform Memory Access)
• What we have:

• Memories are getting bigger
• Growing complexity memory hierarchy
• Temporal and spatial locality issues

(NUMA: Non-Uniform Memory Access)





Memory speed hasn’t 
kept up

• Pre-1970s memory faster than 
processor...

• Now thousands of times slower to access



Multi-core processor chips
• E.g., Intel Core i7 generates up to 2 
refs/clock

for each of 4 cores @ 3.2GHz
– 25.6G 64-bit data refs/s
– 12.8G 128-bit inst. refs/s

Total 409.6GB/s… but DRAM is 25GB/s!
• Multi-port pipelined cache
• Multiple levels of caching
• Logic to support sharing
• Large fraction of area & power budget



Terms• Cache line: one block of data in cache
• Dirty line: a block with value different 
from that

block in lower memory levels
• Hit: data found here
• Hit rate or hit ratio: # hits / # references 
total
• Hit time: RAM access time + check 
hit/miss
• Miss: data not here, must forward read 
request
• Miss rate: # misses / # references total
• Miss penalty: time to replace line & 
deliver data



Basic cache design issues

• Placement (mapping)
• Identification:

which line within the set do I want?
• Replacement policy:

which line gets kicked-out to make space?
• Write strategy



Placement / Mapping

• Caches are basically hash tables indexed 
by

hash value of the address requested
• Direct mapped:

Each bucket holds one line
• Set associative:

Each bucket holds set-size lines
• Fully associative:

Only one bucket, which holds all lines



Mapping Addresses
• Each address is {line number} {byte 
offset in

line}; 32B line → [4:0] are offset
• Cache set (bucket) index is hash({line 
number}), 

often contiguous bits from {line number}
• Line tag field holds bits of {line number} 
that

are not implied by bucket index

E.g., a 4-way 16KB cache might be:
512 lines, each 32B long, with 128 

buckets
Address[4:0] is offset, [11:5] is bucket 

index



Best replacement policy?• Direct mapped → no choice
• Random
• Replace a clean (not dirty) line
• LRU (Least Recently Used): mark when 
line

is accessed, replace not accessed 
recently
• LFU (Least Frequently Used)
• MRU and MFU: Most “”
• Belady’s MIN: replace line not used for the

longest time in the future (how to know 
this?)
• Compiler-driven; e.g., using cache bypass



Best replacement policy?

• Sample comparison of LRU vs. Random
• Miss rate %:

LRU Ran LRU Ran LRU Ran
Size 2-way 4-way 8-way
16KB 5.2 5.7 4.7 5.3 4.4 5.0
64KB 1.9 2.0 1.5 1.7 1.4 1.5
256KB1.15 1.17 1.13 1.13 1.12

1.12



Write strategy• Write through
– Write always goes to main memory
– Easy; needed for I/O devices in memory

• Write back
– Write only when line replaced, saving 

traffic
– Could do lazy writes when not busy
– May need to read on miss to get rest of 

line
• Write allocate: write back, but don’t wait 
for

line to be read first; aka pre-arrival 
caching



Write Buffer
• Sort-of like a “level 0 data cache”

(faster because no TLB in front of it)
• Buffer can re-group writes to form write to 
a

larger fraction of a line (not just one byte 
or

word)
• Need to be careful about task switches, 
etc.;

may have to flush write buffer often



What causes a miss?
• Compulsory

– Never touched this block before
– Shared fetch effect can avoid these 

when
another process touches what I want 

first
• Capacity

– Could have been from cache, but didn’t 
fit
• Conflict

– Could have fit, but cache mapping had 
a

conflict with another line that caused 
this

line to be replaced (e.g., direct 
mapped)



Cache optimizations
• Larger total cache size

– Fewer capacity & conflict misses
– Dumber replacement policy works ok
– Increases hit time, die space, and 

power use
• Larger line size

– Fewer compulsory misses (spatial 
locality)

– More capacity & conflict misses
– Increases miss penalty (block transfer 

time)



More cache optimizations

• Higher associativity
– Reduces conflict misses
– Increases hit time & power use

• More levels of cache
– Smaller, faster, upper-level caches
– More complex hardware structure



Still more cache 
optimizations

• Priority to read misses over writes
– Reduces miss penalty
– Modest increase in design complexity

• Avoiding address translation before 
indexing

– Reduces hit time
– Not what operating systems expect
– Frequent cache flushes or need PID 

tags



Advanced cache optimizations

Small & simple L1 caches
• Critical timing path is

Access tags → compare tags → select 
line
• Direct-mapped can overlap tag compare 
with

transmission of line data
• Lower associativity reduces power

(fewer comparators, narrower data 
access)



Advanced cache optimizations

Small & simple L1 caches

Access time vs. L1 size and associativity



Advanced cache optimizations

Small & simple L1 caches

Read energy vs. L1 size and associativity



Advanced cache optimizations

Way prediction

• Used in MIPS R1000, ARM Cortex-A8
– Helps where tag compares are 

serialized
– Mispredict increases hit time
– Accuracy >90% for 2-way, >80% 4-way
– Inst. cache more predictable than data

• Way selection predicts line data and tag



Advanced cache optimizations

Pipelined cache

• Improves bandwidth
• Easier to do higher associativity
• Branch mispredict time increases
• Examples:

Pentium was 1 cycle
Pentium Pro – III were 2 cycles
Pentium 4 – Core i7 are 4 cycles



Advanced cache optimizations

Non-blocking cache

• Allows hits before previous misses 
complete

– “Hit under miss”
– “Hit under multiple miss”

• Required for L2 caches
• Processors can’t hide L2 miss penalty



Advanced cache optimizations

Non-blocking cache



Advanced cache optimizations

Multi-banked cache
• Fragment cache into independent banks

– ARM Cortex-A8 supports 1-4 banks of 
L2

– Intel i7 supports 4-bank L1, 8-bank L2
• Banks commonly interleave on low bits of

line address (sequential interleaving):



Advanced cache optimizations

Critical word first
• Requested word in line is fetched first
• Requested word is returned immediately 
upon

arrival at the cache – don’t wait for full 
line
• Other words of line fetched in some order
• Can use rotated order

– Start at word k, ith fetch is (k+i)%n
– Sort-of like assuming sequential 

prefetch



Advanced cache optimizations

Early restart

• Requests words in normal order
• Requested word is returned immediately 
upon

arrival at cache – don’t wait for full line
• Potentially simpler than critical word first,

probably not as effective…



Advanced cache optimizations

Merging write buffer• This is the write buffer described earlier…
essentially a FIFO of lines

• Does NOT always treat write buffer as a 
FIFO

– Each line tracks which fields are 
“present”

– Collects word writes into the same line 
entry

– I/O addresses must still be FIFO
• Increases effective size of write buffer
• If entire line is present, cache doesn’t 
need to

read the missing parts



Compiler optimizations

Linker optimization
• Changing link order can change caching 
by

changing which addresses conflict in 
cache

– If f() calls g(), different buckets for f() 
and g()

– Profiling to detect conflict pattern
• Same idea can be used to pick addresses 
for

data structures



Compiler optimizations
• Restructure code to change data access 
pattern

– Group data (data layout)
– Reorder accesses (loop 

transformations)
• Prevent cache pollution

– Why cache what you get from a 
register?

– Often double-map: cache / bypass
• Avoid saving data that isn’t used again



Compiler optimizations

Merging/splitting arrays• Array elements accessed together can be
grouped together to enhance spatial 

locality
• Also separate those not accessed 
together

E.g., suppose a[i] and c[i] accessed 
together:

int a[N], b[N], c[N];
struct { int a, b, c; } abc[N];
struct { int a, c; } ac[N]; int b[N];



Compiler optimizations

Loop interchange
• Loop nest traversal order matches data 
layout
• Improves spatial locality

E.g., if a[0][0] is next to a[0][1]:

for (i=0; i<N; ++i)
  for (j=0; j<M; ++j) a[i][j] = 0;
for (j=0; j<M; ++j)
  for (i=0; i<N; ++i) a[i][j] = 0;



Compiler optimizations

Loop fusion
• Fuse loops that work on similar data
• Improves spatial locality

for (i=0; i<N; ++i)
  for (j=0; j<M; ++j)
    a[i][j] = b[i][j] + c[i][j];
for (i=0; i<N; ++i)
  for (j=0; j<M; ++j)
    d[i][j] = a[i][j] * c[i][j];
for (i=0; i<N; ++i)
  for (j=0; j<M; ++j) {
    a[i][j] = b[i][j] + c[i][j];
    d[i][j] = a[i][j] * c[i][j]; }



Compiler optimizations

Loop blocking/stenciling

• Iterate in pattern that maximizes reuse

for (i=0; i<N; ++i)
  for (j=0; j<N; ++j) {
    r = 0;
    for (k=0; k<N; ++k)
      r += y[i][k] * z[k][j];
    x[i][j] = r; }



Compiler optimizations

Loop blocking/stenciling

• Iterate in pattern that maximizes reuse

for (jj=0; jj<N; jj+=B)
  for (kk=0; kk<N; kk+=B)
    for (i=0; i<N; ++i)
      for (j=jj; j<min(jj+B,N); ++j) {
        r = 0;
        for (k=kk; k<min(kk+B,N); ++k)
          r += y[i][k] * z[k][j];
        x[i][j] += r; }



Prefetching
• Software (by compiler)

– Hoist load to earlier position in program
– Suggest hardware load into cache

• Hardware
– Assume or recognize reference pattern

and request expected next early
– Line +/-1, strided, other patterns

• Works better for instructions than data
• Generally can abort a prefetch to cache,

Prefetches can’t fault (no exceptions)



Prefetching
• Fetch line and next line on a miss 
(Pentium 4)





Consistency Models

• The volatile keyword in C/C++ gives
potential memory order constraints

• Strict: everybody sees result at next tick
• Sequential: everybody sees things as if

they happened in a sequential order
• Weak Ordering: memory barriers/fences

force ordering of before vs. after



Cache Coherence
• How one maintains consistency
• What to do when something writes?

– Invalidate: mark/discard old entries
– Update: use the write data to update

• Who to notify?
– Snooping: everybody watches
– Ownership: only talk to owner
– Directory: permissions, who to notify

• MESI Protocol: Modified (dirty), Exclusive,
Shared (clean), Invalid – 4 line states


