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Abstract

There exists a set of reversible primitive modules that may be combined according to a set
of simple rules to create larger systems, which are themselves reversible primitive modules.
These modules may be combined to create a fully reversible, universal computer.

I describe techniques for creating reversible primitive modules from simple switches, such as
conventional CMOS transistors, and the rules for combining these modules to maintain re-
versibility. As an example of a complex system that can be constructed from these modules,
a fully reversible microprocessor, Pendulum, is presented. This universal microprocessor has
been fabricated in a 0.5 pm CMOS process and tested. Pendulum has eighteen instructions,
including memory access, branching instructions, and direction changing instructions. The
datapath supports twelve-bit wide data and address values.

The motivation for reversible computing research comes from an investigation of funda-
mental limits of energy dissipation during computation. A minimum energy dissipation of
kBT ln 2, where kB is Boltzmann's constant, is required when a bit is erased. Erasing a bit is
a logically irreversible operation with a physically irreversible effect. A reversible computer
avoids bit erasure.

Fully reversible in the case of the Pendulum processor means reversible at the instruction
set architecture (ISA) level and the circuit level. The primary contributions of this thesis
are, first, the discoveries about how to design and build reversible switching circuits, includ-
ing memory and control structures, and notational inventions that ease reversible system
design, and second, the architectural innovations brought about by the development of the
Pendulum reversible processor.

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist, MIT Al Lab
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Chapter 1

Introduction

1.1 My Thesis

There exists a set of reversible primitive modules that may be combined according to a set

of simple rules to create larger systems, which are themselves reversible primitive modules.

These modules may be combined to create a fully reversible, universal computer.

It is possible to design and fabricate a fully reversible processor using resources which are

comparable to a conventional microprocessor. Existing CAD tools and silicon technology

are sufficient for reversible computer design. I have demonstrated this by designing such a

processor and fabricating and testing it in a commercially available cMos process.

Fully reversible in this case means reversible at the instruction set architecture level and the

circuit level. Programming the processor is only briefly treated in this dissertation, as are

the underlying physics of bit erasure and reversibility. The primary contributions of this

thesis are, first, the discoveries about how to design and build reversible switching circuits,

including memory and control structures, and notational inventions that ease reversible

system design, and second, the architectural innovations brought about by the development

of the Pendulum reversible processor.

This thesis, while originally motivated by the promise of asymptotically zero energy com-
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puting using reversible circuits, is relatively unconcerned with actual energy and power

dissipation of the processor. The development, implementation, and testing of a fully re-

versible general purpose processor is a substantial advancement of the field.

Power and energy dissipation in modern microprocessors is obviously a concern in a great

number of applications. Riding the technology curve to deep submicron devices, multi-

gigahertz operating frequencies, and low supply voltages provides high performance and

some reduction in dissipation if appropriate design styles are used, but for applications

with a more strict dissipation budget or technology constraints, more unusual techniques

may be necessary in the future.

Adiabatic or energy recovery circuit styles have begun to show promise in this regard. Mo-

tivated by the result from thermodynamics that bit erasure is the only computing operation

associated with required energy dissipation, various techniques that either try to avoid bit

erasure or try to bring the cost of bit erasure closer to the theoretical minimum have been

implemented. To truly avoid bit erasure, and therefore perform computation that has no

theoretical minimum dissipation, the computing engine must be reversible. Losses not as-

sociated with bit erasure are essentially frictional, such as the non-zero "on" resistance of

transistors, and may be reduced through circuit design techniques such as optimally sized

transistors, silicon processing techniques such as silicided conductors, and by moving charge

through the circuit quasistatically as with constant current ramps in adiabatic circuits.

1.2 A Few Words About Words

Much discussion about reversible computing is hampered by imprecision and confusion

about terminology. In the context of this dissertation, terms will hopefully be used consis-

tently according to the definitions in this section.

The overall field of reversible computing encompasses anything that performs some opera-

tion on some number of inputs, producing some outputs that are uniquely determined by

and uniquely determine the inputs. While this could include analog computation, this dis-

sertation is only concerned with digital computation. Reversible computation only implies
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that the process is deterministic, that the inputs determine the outputs, and that those out-

puts are sufficient to determine the inputs. Every state of the computing system uniquely

determines the next state and its previous state.

A particular design may be reversible at one or more levels and irreversible at other levels.

For example, an instruction set may be reversible and yet be implemented in an irreversible

technology. The test chip "Tick" was an eight-bit implementation of an early version of the

reversible Pendulum instruction set in an irreversible standard CMos logic family.

The specific implementation of a reversible computing system may vary greatly. Numerous

mechanical structures have been proposed, including Drexler's "Rod Logic" and Merkle's

clockwork schemes [Mer93, Mer92]. Younis and Knight's SCRL is a reversible electronic

circuit style suitable for use in the implementation of a reversible computer.

Many papers refer to "dissipationless" computing. This is a misnomer and generally may be

interpreted as shorthand for "asymptotically dissipationless" computing. This means that

if the system could be run arbitrarily slowly, and if some unaccounted-for Nth order effect

does not interfere, the dissipation asymptotically approaches zero in the limit of infinite

time per computation. Only reversible computations may be performed asymptotically

dissipationlessly because bit erasure requires a dissipation of kBT In 2 regardless of operation

speed. Any Nth order effects that prevent a reversible system from dissipating zero energy

are essentially frictional in nature, rather than fixed, fundamental barriers.

One of the most abused terms is "adiabatic computing." While technically "adiabatic"

means "without transfer of heat," it is generally incorrectly used to mean "quasistatic."

Current flow in "adiabatic" circuits is externally controlled and ideally constant, and re-

ducing the current flow allows the voltage drop across the on-resistance of a transistor to

be arbitrarily small. In the limit, charge flows quasistatically, and the energy dissipation in

the transistors falls to zero.

SCRL also has a confusing name, split-level charge recovery logic. All systems recover charge,

the feature of SCRL is that the charge is recovered at a higher energy than in a conventional

system. It could more accurately be called split-level energy recovery logic, because the
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energy is recovered rather than dissipated as heat.

Reversible architecture designs also have a number of confusing terms. Section 8.5 mentions

the production and management of "garbage" information. In Ressler's early reversible

computer work [Res8l] and Vieri's reversible instruction set design [Vie95], intermediate

information produced during computation is consigned to a "garbage stack." The pejorative

term "garbage" is undeserved, and the results referred to are only garbage in the sense

that they are not explicitly required in the computation at the time; they are necessary for

reversibility and may be useful or necessary later. The programmer may be clever enough to

re-use the values or "recycle" them to reclaim the storage space without erasing information.

In the context of CMos-based circuits, we may talk of the energy on a node being "reclaimed"

or the voltage may be "restored" to some value. The implication is that the node is being

quasistatically reset to a known value. The node may be reset from ground or from Vdd to

an intermediate value, so the energy stored on the node may be increasing or decreasing.

A logic stage using one set of signal values to compute another set of values and restore

the second set of nodes to a known state is generally referred to as a "reverse" node. The

imposition of direction on the energy flow, "forward" referring to energy flowing from the

power supply to the internal nodes of the system, and "reverse" referring to energy being

returned to the power supply, is somewhat arbitrary, although hopefully intuitive.

1.3 Structure of this Dissertation

The thermodynamic background and the motivation behind reversible computing research

are discussed in Chapter 2. The various implementation techniques, from mechanical logic

to biological systems, are briefly addressed. The bulk of this dissertation is devoted to the

lessons learned from developing the Pendulum Reversible Processor. This processor is a

none too distant descendent of traditional, indeed early, RIsc architectures. Part II is a

step-by-step examination of general reversible logic design. The specifics of the Pendulum

processor, including datapath design, instruction set choices, and processor control, are

found in Part II.
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It has been suggested that a reversible circuit technology might find a more appropriate ap-

plication in a more radical architecture. The Flattop billiard ball computer design exercise,

discussed in Chapter 10, was an investigation of an alternative processor architecture. The

inherently reversible cellular automata used in the Flattop chip maps well into a reversible

energy recovery logic implementation. Other architectures that take advantage of the struc-

ture of an underlying reversible implementation might also be powerful. Open questions

such as this are addressed in Part IV.

1.4 Contributions of this Work

This dissertation presents two substantial contributions. The first is a set of techniques for

creating reversible logic modules and connecting them to create larger reversible modules.

As such, it is a primer for future reversible logic designs. The second contribution is the

Pendulum Reversible Processor, a fully-reversible twelve-bit microprocessor. It serves both

as a design example for the reversible logic design techniques mentioned above, but also

contributes to the understanding of reversible computer architecture, including instruction

set design, logic block design, and datapath organization.

The Pendulum processor is currently the largest fully reversible system ever implemented.

Other than the designs described in this dissertation, Younis's eight-bit multiplier [You94]

was the largest fully reversible system. It contained ten levels of logic and was fully combi-

national.

Developing the Pendulum processor required invention of a notation and methodology for

constructing and describing reversible logic. Using those techniques, a cell library, including

memory elements, had to be constructed. Those cells were used to implement large datapath

modules, such as the register file, the ALU, and the program counter update unit. An

instruction set and datapath architecture were also designed, determining the datapath

module interconnections. Some techniques for assembly language programming were also

developed.

21



Chapter 2

History of and Motivation for

Reversible Computing

2.1 Relationship of Reversibility to Energy Dissipation

Reversibility requires that each state of a computing system uniquely determine both the

next state and the previous state. This implies that no information is erased in the transition

from one state to the next.

The link between entropy in the information science sense and entropy in the thermodynam-

ics sense is demonstrated by Maxwell's demon [Max75] and was discussed by Szilard [Szi29].

Landauer [Lan6l] showed that erasing a bit requires dissipation of kBT ln 2 energy units,

where kB is Boltzmann's constant. Erasing a bit is a logically irreversible operation with

a physically irreversible effect. Bennett [Ben73] then showed how a reversible computation

could be performed.

By avoiding information erasure, the compute engine avoids this energy dissipation. The

other, essentially frictional, sources of dissipation may be reduced arbitrarily by quasistati-

cally transitioning the compute engine from state to state. A system that avoids bit erasure

may therefore be operated with asymptotically zero energy dissipation. An irreversible

system has a fundamental lower limit to the energy dissipated during a computation, pro-
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portional to the number of bits erased.

Any system with asymptotically zero energy dissipation may not erase information, and

a system that does not erase information is fully reversible. An irreversible system may

store information produced during a computation, rather than erasing it, but not provide

a path from each state to its previous state. This type of system merely delays the energy

dissipation due to bit erasure, since the information stored during computation represents

an unrecoverable quantity of energy added to the system during computation. The energy

used to store this information is unrecoverable unless the system is reversible.

To be fully reversible, a compute engine must be reversible at all levels of its design. Re-

versible electronic computers must have a reversible power supply, which power reversible

circuits, which implement a reversible architecture, which runs reversible programs.

It may seem obvious why reversible circuits and a reversible power supply are required

to avoid energy dissipation, since these are the parts of the system actually shuttling the

energy through the system, but it is less obvious why a reversible architecture and reversible

code are required. The reason is that if a program or instruction set erase information, it is

impossible'to build a reversible circuit that performs that operation. Bottom up pressure

from the circuit and power supply level dictates that irreversible operations are prohibited

at all levels of the system if dissipation due to bit erasure is to be avoided. The reversibility

may be "hidden" or made more palatable, but each part of the system must be reversible

to avoid the energy dissipation from bit erasure.

2.2 Implementation Techniques

A logically reversible circuit may be implemented in a variety of different physical structures.

During the twenty years between Bennett's 1973 description of how a reversible computation

might be performed and the 1993 discovery of SCRL by Younis and Knight [YK93], a number

of mechanical "thought-experiment" style implementations were proposed. This section

discusses some of the schemes that have been proposed.
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Various nanotechnology researchers have become interested in mechanical reversible logic.

The macroscopic models they envision involve sliding rods, turning gears, "locks" and

"keys," and various other parts that would be at home in a Babbage engine. Fredkin's

billiard ball model [FT82] became popular for describing reversible systems. Merkle's me-

chanical logic [Mer92] was motivated by nanotechnology.

The focus of this work is on digital electronic computation, primarily using the SCRL logic

family. Invented by Younis and Knight [YK93], it has proven to be a useful logic style

for constructing reversible computation structures in standard industrial silicon processes.

Athas's Adiabatic CMos group at USC's Information Sciences Institute, has applied selective

reversibility to reduce the energy dissipation of practical systems [TA96, ATS+97, ASK+94,

KA92, AS94], including energy recovering power supplies [AST96].

Moving electrons at a finite rate through a resistive element dissipates energy whether or

not information is erased. Eliminating the resistive elements eliminates this source of en-

ergy dissipation. Superconducting switching elements, such as Josephson Junctions [Lik82],

avoid resistive losses, but all AC superconducting circuits dissipate some energy.

Computing with a quantum system, in which so-called q-bits may be in a superposition of

both one and zero states, requires reversible logic. If a quantum system is coupled to the

environment, the superposition is lost, resulting in dissipation, but more importantly, the

computational advantage of the quantum system disappears [Sho94, Fey86].

The replication of DNA in living cells is very efficient, with only a few tens of kT dissipated

during each operation [Ben82]. Recently it has been proposed that existing cellular ma-

chinery may be manipulated to perform computations, with the results being expressed by

the production of various detectable proteins.

2.3 Reversible Architecture and Programming

Ressler's work, designing and implementing a reversible computer using entirely the con-

servative Fredkin gate [Res79, Res8l], was the first attempt at a fully reversible computer.
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The physical implementation suggested was Fredkin's billiard ball model. Hall's work with

retractile cascades [Ha192, Ha194] was motivated by nanotechnology, and his proposal for

a reversible architecture was based on a PDP-10. No implementation technology was pro-

posed.

Baker proposed various reversible programming techniques [Bak92b], including a reversible

lisp [Bak92a], and Frank addressed a number of issues with algorithms and programs for

reversible computers [Fra99].

Vieri's Master's thesis suggested a RISC-like architecture and programming style [Vie95].

This work is a direct extension of that research. The following parts of this dissertation

cover building digital, electronic, scRL logic to implement the Pendulum reversible micro-

processor.

25



Part II

Building Reversible Circuits
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Chapter 3

Fundamentals of Reversible Logic

3.1 Reversible Logic Design Styles

A number of reversible circuit styles proposed to date, from charge steering logic discussed in

Section 5.1.3, to Hall's retractile cascades [Hal92], to SCRL, have in common the distribution

of powerl and timing information on the same set of wires. These "power clocks" may be

driven by a resonant, energy recovering power supply, or by more conventional means.

The SCRL logic family requires between sixteen (for two-phase logic using only inverting

stages) and thirty-six clock rails (for four-phase logic using non-inverting stages). SCRL

logic uses both rail polarities for each timing phase, so the number of different phase clocks

is half the total number of clocks. It may be possible to eliminate the full swing t-gate

control clocks since they do not actually power the logic.

By contrast, retractile designs require one clock phase for each level of logic, and are there-

fore not regularly scalable. The Pendulum processor would require 73 power clocks if

designed using retractile logic, a factor of more than two over the thirty SCRL clocks used.

The logic would have been much simpler, however, requiring half as many transistors. The

differences between retractile systems and pipelined systems such as SCRL are discussed

'Most reversible cMos-based logic styles also require distribution of DC valued supply rails for well and

substrate taps. Ideally no energy is dissipated from these supplies.
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below.

3.1.1 Retractile and Pipelined Design Styles

The three fabricated integrated circuits fabricated in the course of this research, the billiard-

ball-model cellular automaton chip Flattop, the eXchange RAM chip XRAM, and the fully re-

versible Pendulum processor, were all designed using three-phase SCRL logic. The transistor-

level discussions are often specific to SCRL, but the notational and hierarchical lessons are

generally applicable to any pipelined reversible logic family using switching elements like

CMOS transistors.

Hall's "retractile cascade" [Hal92] is one of the earliest forms of reversible switch-based

logic proposed. The distinguishing feature between reversible pipelined logic and retractile

cascades is that in a retractile cascade the energy enters and exits the system through a single

path. A pipelined system has separate paths for the energy to enter and exit. In a pipelined

system, input signals need not be held for the entire duration of the computation. A

retractile cascade requires that the first signal to be asserted be held until the all subsequent

signals have been asserted and retracted. The number of power rails for a retractile cascade

circuit therefore depends on the depth of the computation. A pipelined circuit may have

an arbitrarily deep computation path with a constant number of rails. For most variations

of SCRL this number is approximately twenty.

Some parts of the design styles discussed below are applicable to retractile designs. Re-

tractile designs are not particularly scalable, and a pipelined design style can perform the

same operations as a retractile design, but with potentially fewer clock signals. However,

since energy flows into and out of the system through the same path in a retractile cascade,

it does not require the top to bottom symmetry discussed below in Section 3.2. The logic

must still be symmetric left to right. The single symmetry of a retractile cascade suggests

that perhaps a pipelined logic family could be developed that only requires one axis of

symmetry.

The focus on SCRL in this dissertation is purely pragmatic; other superior reversible logic
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families are sure to be developed and the design techniques below refined, but the general

strategies of using abstraction and hierarchy and careful logic design are applicable to design

of any complex system.

3.1.2 Younis's Pipelined SCRL

Detailed coverage of Younis's SCRL reversible logic style may be found in the literature [You94,

YK93, YK94]; this section serves only as review so that Chapter 4 may be more intelligible.

Readers interested in the development and energetics of SCRL are encouraged to consult the

literature.

The development of SCRL resulted in two rules for constructing reversible CMOS logic. The

first is that a transistor may only be turned on when no potential difference exists between

its source and drain. The second is that charge flow between any two nodes in the circuit

occurs gradually and under external control. These two rules may only be obeyed for every

node in the circuit if reversible logic is employed. By using reversible logic and following

these rules, the circuit will not dissipate any energy due to bit erasure. The circuit will

suffer resistive losses from the finite on resistance of transistors, and losses in the power

supply may be substantial depending on its design, but none of the dissipation will be due

to bit erasure, and the losses are therefore asymptotically zero.

Section 4.1 treats standard CMOS energetics and how to convert a CMOs inverter into an

SCRL inverter. SCRL does not use DC supply rails to power the logic. Swinging rails are

used to ensure that when a gate's input values change, the potential on both sides of the

transistors are the same. When the input values are stable, the rails can swing, gradually

and under external control so as to obey the second rule, and the output nodes will transition

along with the swinging power supply. The slowly swinging rails ensure that the potential

drop across the transistor is small, reducing V 2 /R dissipation in the device. In the limit,

charge flows quasistatically through the circuit. If reversibility is broken, a device's input

will change with a potential across the device, and the sudden current flow across this large

potential drop dissipates the energy associated with the bit being erased.
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In the discussions that follow, it is helpful to remember these two rules. All the complexities

of reversible logic, swinging rails, and signal timing are endured to ensure that these two

rules are obeyed. ScRL is just one possible logic family that obeys these rules, but other

CMos-based reversible logic is subject to the rules as well.

3.2 Symmetry

Symmetry is an important aspect of reversible system design. For the most part, wherever

symmetry is broken, reversibility is likely to be broken. The reversible systems analyzed in

this dissertation are all excruciatingly symmetric. The symmetry is perhaps overdone. Each

reversible module, as will be shown in Chapter 4, contains a part that drives a value onto

the output and a part that uses the output value(s) to restore the input(s) to a known value.

The computation proceeds from one logic stage to the next in a pipelined fashion. Each

module is symmetric in having a "forward" function and "reverse" function that computes

the inverse of the forward part. If the computation is proceeding from left to right, the

module is symmetric top to bottom.

The logic is also generally symmetric from left to right, along the computation path. Signals

that are decoded are later encoded. Values computed are later uncomputed. Every signal

fan-out has a counterpart fan-in somewhere downstream. Chapter 6 analyzes in detail a

reversible adder; the adder modules contain both the internal top to bottom symmetry, but

the adder as a whole performs an add and an "unadd."

Pipelined design considerations prompt the top to bottom symmetry consideration. An

SCRL logic gate, or any other reversible pipelined logic gate, has separate paths for adding

and removing energy from a capacitive node. These separate paths form the top to bottom

symmetry mentioned above. A retractile design uses the same path for adding and removing

energy, and therefore does not require top to bottom symmetry. The cost is that every stage

of logic must have its own power clock. A pipelined design reuses a single set of power clocks,

and is therefore more easily scalable.

The left to right symmetry arises from a desire to recover the energy stored in intermediate
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values produced during the course of a computation. During modulo addition, for instance,

a ripple-carry adder computes a multi-bit sum S from two multi-bit operands A and B.

When the final bit of S is computed, the output of the system, if every stage has been

performed reversibly, is S, A, B, and the final carry out bit. These three multi-bit values

and one extra bit are a redundant encoding of the desired information. Modulo addition

of two input values need only retain S and B; the A and carry out values are merely

intermediate "garbage" values, retained to ensure that each stage of the ripple add may be

performed reversibly. These intermediate values may be uncomputed by using an "unadd"

chain. This is symmetric left to right to the forward adder. This symmetry is unnecessary

if the intermediate values are desirable, or even if the modulo addition is performed in

some other way so as to not produce the intermediate values at all. However, reversible

computing often exhibits this compute-uncompute symmetry, either spatially in hardware

or temporally during execution [Ben88, Ben89].

3.3 Conclusion

Reversible logic may be constructed in a variety of logic styles. Pipelining the logic allows

a fixed set of clocks to power the entire, scalable system. This requires that the logic be

more complex, supporting symmetric paths for energy to enter and exit the computing

system. The next chapter presents techniques for constructing and composing reversible

logic modules, concentrating on a notation and methodology for SCRL circuits.
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Chapter 4

Pipelined Reversible Logic Design

The focus of this dissertation is the development of techniques for designing complex re-

versible logic systems. The Pendulum Reversible Processor, presented in detail in Part III,

is a suitably complicated example, and many of the lessons in this chapter were learned dur-

ing the development of the Pendulum processor. Because of this background, the techniques

below are slanted towards the use of three-phase SCRL CMOS logic. It must be emphasized

however that they are, for the most part, generally applicable to any switch-based imple-

mentation technology, and even to any pipelined reversible logic style. Three-phase SCRL

was chosen over other variants of SCRL because it requires the fewest power rails while

always actively driving all circuit nodes.

This chapter very deliberately follows much of the structure and style of the seminal book

by Weste and Eshraghian, Principles of CMOS VLSI Design. I hope that imitation is the

sincerest form of flattery.

4.1 The Inverter

The standard CMos inverter is the traditional introductory logic gate in conventional text-

books. This section analyzes the CMos inverter and the necessary modifications to create an

SCRL inverter. The basics of a conventional CMoS inverter and the flow of energy through
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the inverter are examined, followed by the construction of a "clocked inverter" and a shift

register. Then the conventional inverter DC power supplies are replaced with SCRL's swing-

ing rails. Finally, the complete SCRL inverter is examined in detail. Younis [You94] is

responsible for the development of SCRL logic, so this section may be considered essentially

a review of the state of the art with respect to SCRL's novelty. The design techniques,

symbology, and notation, however, are contributions of this dissertation.

This and the following sections assume the reader has a fairly intimate understanding of

conventional CMOS circuits and Boolean logic design.

A standard CMOS inverter, shown in Figure 4-1, uses two voltage-controlled, resistive

switches to charge and discharge a load capacitance. The input to the switches is mod-

eled as a step. When the pmos switch is on, current flows from the positive supply through

the on-resistance of the switch, pulling the load capacitance to the upper rail voltage. The

load capacitance charges to a value V with a time constant RC where R is the on resistance

of the pfet device. During charging, iCV2 units of energy are dissipated in the resistive

pfet device and an equal amount of energy is stored on the load capacitor.

(a) C (b)

Figure 4-1: The conventional CMOS inverter (a) schematic showing parasitic capacitance
and (b) symbol.

When the input value changes, the charge stored on the load capacitor is discharged through

the on resistance of the nmos switch to ground. To first approximation, energy is only

dissipated during transitions. More accurately, the switches are slightly "leaky," and a

small current flows when the input is stable. This leakage may be reduced through a
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number of techniques, including process modification and by increasing the gate length of

the devices. In the current discussion leakage will be ignored.

The inverter output changes some small delay after its input changes. It is often desirable

to regulate the time at which the output node changes, so we now add a clocked output

stage to the simple inverter, shown in Figure 4-2. The output stage is merely a simple

C

Figure 4-2: A clocked CMOS inverter.

complementary transmission gate. The nmos side is clocked with clock signal P and the

pmos side is clocked with its inverse, P. When the t-gate is on, the input value is propa-

gated to the output, and when the t-gate is off, the output is isolated from changes of the

inverter. This "clocked inverter" will become our first primitive building block. Fan-out

is a simple matter; the output of one clocked inverter can drive multiple clocked inverter

inputs. Conventional concerns of RC delays and transistor sizing apply.

Any number of clocked inverters can be connected together into a clocked shift register

using two pairs non-overlapping clock signals, P1 , P1 , P 2 , and P2 , as shown in Figure 4-3.

The clock signals and waveforms at the labeled nodes are shown in Figure 4-4. The shift

register could be clocked using only one pair of clock signals by connecting the gates of

alternating t-gates to the opposite polarity clock signal, as shown in Figure 4-5, if the clock

edges are sharp enough to prohibit the signal from passing through more than one clocked

inverter at a time.

An obvious shortcoming of this clocked inverter shift register is that the input nodes to each

inverter, nodes A, C, and E in Figure 4-3, are not actively driven and rely on capacitive

charge storage for half the time. The next modification to the clocked inverter is the addition

34



A B C D E

T T

NI
Figure 4-3: A clocked CMos inverter shift register.

1 2 3 4 5 6 7 8 9

p1
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Figure 4-4: Clocked CMOS inverter shift register timing. Note that the edges of signals B
and D are sharpened by the inverters. Nodes C and E only change when the pass gates

they are attached to are turned on. Nodes C, D, and E have unknown values until the shift
register input, A, has been clocked to those nodes.

A B C D E

Figure 4-5: Alternate clocking of the clocked CMOs inverter shift register.
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of a "keeper" gate to ensure that all nodes are actively driven all the time. Conveniently,

another clocked inverter will serve as a suitable keeper gate. Figure 4-6 shows three clocked

inverters added as keeper gates to the shift register. The keepers' t-gates are clocked with

the opposite polarity clocks as the t-gates in the clocked inverter above and to the left of

the keeper.

Figure 4-6: A clocked CMOS inverter shift register with keeper gates.

This approach to using a clocked inverter as keeper gate is in some sense more complicated

than necessary. The addition of a pfet, as shown in Figure 4-7, will hold the input high when

the output is low, but the input still floats when the output is high. This scheme also relies

on the keeper devices being weak compared to the inverters. An unclocked inverter could

be put in the feedback path, creating something resembling a conventional SRAM cell but

requiring careful transistor sizing to ensure proper operation. The clocked inverter keeper

is a step towards a fully reversible scRL shift register.

Figure 4-7: A clocked CMOS inverter shift register with pfet keepers.

This clocked inverter keeper is not applicable to a string of arbitrary gates. Gates such as
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NAND or NOR have multiple inputs and only one output and cannot, in general, use a set

of keepers to hold the input values stable based only on the output value. At this point it

should be clear that the notion of reversibility is creeping into the discussion. The keeper

gates used in the clocked inverter shift register use the output value of a clocked inverter to

generate the input value to the clocked inverter. The notion of using the output of a gate

to generate the input to the gate is fundamental to building reversible logic.

The clocked inverter shift register requires one additional modification to turn it into an

SCRL shift register: the DC supply rails powering each inverter must be converted to swinging

"power clocks." This is to obey the SCRL constraint, brought up in Section 3.1.2, that charge

flow quasistatically through the resistive transistors. It is fundamentally important to note

that ensuring quasistatic charge flow at all times in a circuit, and therefore potentially

asymptotically zero energy dissipation, requires the use of reversible logic. The dissipation

of 1 CV 2 in the on-resistance of a conventional inverter's transistors during switching is2

due to the large potential drop across the switch when it is turned on. By keeping the

potential drop across the transistor small, the associated dissipation may be made arbitrarily

small. Rather than charge the load capacitance with a constant voltage, SCRL and other

adiabatic CMOS logic use a constant current. For a linear capacitance, that implies a voltage

ramp. The energy dissipation, from Seitz [SFM+85] in Athas [AS94], when charging a load

capacitance C to a voltage V through a resistance R using a constant current I is

Ediss = P -T = 12R -T - RT - CV2
T T

Increasing the charging time T therefore, to first order, reduces the energy dissipated during

switching.

Proper SCRL circuit design ensures that no transistor is turned on with a potential drop

across it. Node voltages only change when following the controlled ramp of the supply

voltage. Proper SCRL power supply implementation ensures that the current through tran-

sistors flows in a controlled manner. The energy-recovering details of an appropriate power

supply are beyond the scope of this dissertation, but various designs can be found in the

literature [BK98, AST96, SK94].
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Beginning with the clocked inverter from Figure 4-2, the Vdd and ground connections are

replaced with two complementary swinging power clocks, # and b. These clocks each ramp

from Vdd/ 2 to Vdd and ground, respectively, as shown in Figure 4-8. The signal # and its

1 2 3 4 5 6 7 8 9
I I I I -- - -- - - r -- -

GN I -- ------- I -------I -- I --- ------
I I I | I I

S I --- - ----- -- I I ----- -

G D1 - ---- --------- --- A

Figure 4-8: The SCRL split-rails q and .

complement are always used together, and they may be referred to as the # rail pair, or

sometimes just as the # rails. The slope of these ramps determines the dissipation in each

transistor since the charging time varies, and the dissipation falls according to the equation

above. The DC powered clocked inverter, on the other hand, drives the output node, C in

Figure 4-3, with a step as soon as the t-gate is switched on. The clocked inverter charges

the capacitive node with time constant RC where R is the on-resistance of the charging

(or discharging) transistor plus the on-resistance of the t-gate. By using swinging power

clocks, node C may be gradually ramped from Vdd/ 2 to Vdd or ground with a time constant

determined by the slope of the rail. A single clocked inverter with swinging power rails and

their timing are shown in Figure 4-9. This structure is an SCRL "half-inverter."

J- 1 2 3 4 5 6 7 8 9

GND -- -------
- V - ----- -- ------- - -- -- ---

(a) c (b) GND -----.-.

P

Figure 4-9: The SCRL half-inverter (a) schematic and (b) supply clock timing. The load
capacitor is parasitic, not an explicitly added element.

The astute reader may now be asking how the output node returns to Vdd/ 2 rather than

staying at Vdd or ground. The answer is that the keeper gate connected to the output
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node, itself an SCRL half-inverter, is responsible for restoring the voltage to Vdd/ 2 . This

topology is shown in Figure 4-10. The keeper gate has become a "keeper/restorer." Four

half-inverters are shown; the two half-inverters of interest are in the upper left and lower

right.

A B C > D Er CL

-- E

FG

Figure 4-10: Four SCRL half-inverters.

The number of swinging rails has increased, and the rail timing for Figure 4-10 is shown in

Figure 4-11. Note that the keeper half-inverter on the lower right must be able to generate

the value at node C from the value at node E in order to restore node C to Vdd/ 2. The half-

inverter on the upper left sets node C from a known intermediate value to a valid logic one

or zero. The keeper gate on the lower right then resets node C to the known intermediate

value. When charging node C to Vdd, energy from the power supply flows in to node C

through one half-inverter then back to the power supply through the other half-inverter.

An SCRL node is always set to a valid value by the upper half-gate and is restored to Vdd/ 2

by the lower half-gate. This is in contrast to a conventional logic gate in which the energy

flows from Vdd to the output node through the pmos devices and out to ground through the

nmos device of the same gate.

The number of devices and clocks used so far has grown enough that some hierarchy is

useful. The SCRL full inverter symbol is shown in Figure 4-12 (a). Note that the power
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Figure 4-11: Timing signals for a shift register of four half-inverters.
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clocks are bundled together in the "rails" pin. It may at first seem that the upper left

and lower right half-inverters in Figure 4-10 should make up a full SCRL inverter because

of their energy-flow relationship. However, the keeper half-inverter uses the output of the

inverter above it to restore node C to Vdd/ 2 . The keeper must know what logical function

the gate above it is performing to return its output node to Vdd/ 2. Therefore, an SCRL

gate in general consists of a clocked gate and the keeper gate directly below. A properly

designed full SCRL gate is able to drive its output node to a valid logic level and restore its

input node to Vdd/ 2 . The schematic for the SCRL full inverter is shown in Figure 4-12 (b).

This full inverter abstraction allows the designer to use the gate for its logical behavior and

not worry about the rail timing or energy flow of the gate. Designing a gate requires only

that the inputs to the gate be restored to Vdd/ 2 by the keeper gate.

(a) rai (b)

Figure 4-12: The SCRL full inverter (a) symbol and (b) schematic.

For convenience, we refer to the upper half-gate as the forward gate and the keeper gate as

the reverse gate. The power clocks and t-gate control signals in Figure 4-12 (b) are prefixed

"f' and "r" for forward and reverse, following this convention. This choice of label is for the

most part arbitrary. Digital designers may find it convenient to think of the computation

proceeding in a particular direction. The symbol for an SCRL full inverter implicitly suggests

a direction for computation despite being completely symmetric internally. The following

section details the development of an SCRL full NAND gate, which is not fully symmetric.
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It is presented as an example of how to construct the schematic and hierarchical symbolic

representation for a general combinational logic gate.

4.2 Combinational Logic

4.2.1 The NAND Gate

The inverter is the classic starting point for understanding a logic family; the NAND gate

is the classic starting point for building computational systems. The truth tables for a

conventional NAND gate and the SCRL NAND gate to be developed are shown in Table 4.1.

The most obvious thing to notice is that the SCRL NAND gate has three outputs: A, B,

and A - B. Because it has more outputs than inputs it is called an expanding operation. In

contrast, the inverter is a non-expanding operation having one input and one output. Chap-

ter 6 presents similar, higher level examples of expanding and non-expanding operations in

a microprocessor ALU.

Table 4.1: Conventional and SCRL NAND truth tables.

The three outputs of the SCRL NAND gate are relatively easy to produce. The A - B output

is generated from an SCRL half-NAND, shown in Figure 4-13 (a). As with the SCRL half-

inverter, the t-gate is clocked with full-swing signals P and P and the output is driven by

half-swing power clocks # and q.

Note that a generalized SCRL half-gate is composed of a logic portion and a t-gate portion.

The # signals drive the logic portion and the P signals control the connection between

the logic portion and the output node. The logic portion may be an arbitrarily complex
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a 0 01

(a) (b) AB

Figure 4-13: ScRL half-NAND gate (a) schematic and (b) symbol.

single level of logic. Traditional transistor sizing rules apply, however, so a large gate may

quickly become unwieldy. Logic minimization rules also apply, so Karnaugh maps or other

minimization tools may be used to simplify the pull-up and pull-down networks in the logic

portion of any SCRL half-gate. The only constraint is that it must be single-level logic, e.g.,

no NAND blocks driving NOR blocks in the logic portion of a single SCRL gate are allowed.

Relatively complex pull-up and pull-down networks are common in reversible logic designs.

Each pipeline phase is constructed to perform as much computation as possible so as to

amortize the scRL power clock overhead.

The SCRL NAND gate requires three outputs so that the reverse part of the gate, the keeper,

may restore the input nodes to Vdd/ 2 . The two outputs A - B and any one other are

insufficient to uniquely determine the inputs and thereby quasistatically restore them to

Vdd/ 2. The two additional outputs, A and B, are chosen somewhat arbitrarily. Non-

inverted values of A and B would also be sufficient to determine the input values, but

inverting gates are simpler to implement in CMOS than non-inverting gates. The A and B

outputs are each generated using SCRL half-inverters.

The two input values can be restored merely by adding a pair of half-inverters as keepers

for the two half-inverters that generate A and P. The output of the half-NAND is not

needed nor used to restore the inputs. The full SCRL NAND gate, shown in Figure 4-14 (a),

is composed of a half-NAND and two full inverters. All three components are clocked in

parallel by the same set of swinging rails. The hierarchical symbol for the SCRL NAND is
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shown in Figure 4-14 (b).

(a) (b) AB
B

f hi, p-hi,fP,t ,rphi,rphi,rP,rF

' p

Figure 4-14: SCRL full NAND gate (a) schematic and (b) symbol.

In practice, it is often more convenient to use the half-NAND from Figure 4-13 (b), since the

A and B signals may pass through another section of the system. In this case, the designer

must be careful to make sure that signals A and B are indeed restored to Vdd/ 2 by another

gate. "Breaking the rules" in the sense of creating a gate that does not itself restore its

inputs to Vdd/ 2 is possible but requires additional designer diligence, namely that another

part of the system properly restore the input values to Vdd/ 2.

Note that NAND gates with more than two inputs may be constructed similarly to the two

input NAND gate. The logic portion of the half-NAND must be changed to a three-input

NAND, and each additional input must be connected to a full inverter feedthrough gate. A

two-input SCRL full NAND gate uses twenty-two transistors: six in the half-NAND and eight

in each full inverter. A three-input SCRL full NAND gate uses thirty-two transistors: eight

in the three-input half-NAND and eight in each full inverter.

4.2.2 The Un-NAND Gate

Since reversible computing requires that information not be discarded, the use of expanding

operations, in this case the NAND gate discussed above, burdens the designer with additional
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Figure 4-15: SCRL un-NAND operation using a half-NAND gate and two full inverters.

signals to feed through the system. At his or her earliest convenience, the designer may

want to perform a symmetric un-expanding operation to eliminate this additional signal.

In a sense, the three outputs of the SCRL NAND gate are a redundant encoding of the two

inputs A and B. Performing an "un-NAND" operation, shown in Figure 4-15, is merely a

more efficient encoding of the three signals. This practice of decoding a set of signals, in

this case from A and B to A, B, and A - B, at the last possible moment, using the decoded

signals for some computation, then re-encoding the signals as soon as possible, is a powerful

technique in reversible system design. This technique of "just in time" decoding is discussed

from a system point of view in Section 8.3.

We have now constructed a full inverter and multiple-input half-NAND gates. This is enough

to construct as complex a computing system as desired. Section 4.3 discusses proper tech-

nique for interconnecting gates and a simple bookkeeping device to keep track of the plethora

of swinging power clocks. The next two subsections cover additional combinational logic

gates.
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4.2.3 The XOR Gate

The XOR gate in conventional CMOs is a sort of "black sheep" of the family. It is not a

universal gatel; NAND and NOR are more powerful in that sense. It is not a conveniently

implementable gate; it requires far more transistors than NAND or NOR. It is dutifully

treated in textbooks because of its importance in the half-adder, but it is never accorded

much respect. Designing reversible systems engenders a certain affection for the XOR gate.

Not only is it easily reversible, it is its own inverse. It is a non-expanding operation, able

to take two inputs A and B and produce two outputs, A E B and B, which are sufficient to

determine the value A. A dual-rail implementation of the XOR gate is fairly straightforward.

Generation of Z = A E B and Z = A e B from A, A, B, and W is shown in Figure 4-16 (a).

Note the similarity to the gates which restore A and A to Vdd/ 2 , shown in Figure 4-16 (b).

The B and B signals are passed through two full inverters, not shown.

A Z

Bot ~ out

FA7

Bu0- Bout

(a) (b)

E 
A 

Z

A 7z

B oUT Bout

Figure 4-16: SCRL XOR gate (a) forward and (b) reverse parts.

An SCRL XOR gate is still not universal, of course, but it is still very useful. Schematic

'Interestingly, quantum computing XOR gates are both universal and reversible.
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design and layout need only be done for one 10-transistor gate which is then replicated four

times to create the forward and reverse path for four signals. The other two signals are

sent through the ubiquitous full inverter. Three-input XOR gates are also relatively simple

to construct.

The XOR operation, because it is easily invertible, is occasionally appended to the logic

equation for some other function. For example, an expanding operation, such as logical

AND, may impose undesirable constraints on a system in order to maintain reversibility.

Rather than implement AND as an expanding, two input/three output function, a designer

may prefer to implement a non-expanding, three input/three output "ANDX" gate which

performs Z+ = (A - B) e Z. The inputs are A, B, and Z; the A and B values pass through

unchanged. The ANDX operation is its own inverse, since it is essentially an XOR operation

between the two operands A -B and Z. Rather than retain the compact, but lossy, encoding

A - B, both values A and B are retained. Combining an expanding operation with XOR is

a powerful technique for ensuring reversible operation while avoiding expanding logic. The

drawback is the use of three input/three output gates and their associated complexity. The

Pendulum processor ALU uses ANDX to simplify the constraints on the programmer to

maintain reversibility. The details are covered in Chapter 8.

4.2.4 Other Logic

Using the techniques above, a designer is now free to concoct any combinational logic gate

desired. The logic portion of a gate is made up of an appropriate pull-up network of pfets

and the complementary nfet pull-down network. The t-gate portion of all non-tri-state gates

is the same, and with appropriate fan-out for expanding operations, any logic function may

be turned into a full SCRL gate, driving its outputs at the correct time and restoring its

inputs to Vdd/ 2 . The following section treats interconnection of these low-level modules.

The formula to create any reversible gate is to first create the static CMOS version of that

gate, the pfet pull-up and nfet pull-down networks. The addition of a t-gate on the output

creates a clocked gate.
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4.2.5 Constants

Generation and reclamation of constants in a conventional machine is trivial: inputs may

be wired to one of the supply rails to produce a constant value, and constant outputs may

be ignored or wired to the appropriate supply. Because the information content is very low,

constants are also relatively easy to deal with in a reversible system. In SCRL circuits, the

prime concern is to maintain proper timing behavior. A constant SCRL value does not have

a fixed voltage level. Rather, it always swings from Vdd/ 2 to one of the rails. The designer

knows to which rail the output will swing but still must construct a suitable circuit so the

signal will swing at the correct time.

Likewise, to reclaim a constant value, a circuit must be constructed to swing from the rail

to Vdd/ 2 at the correct time. The SCRL circuits for a "one-source" and "one-sink" are shown

in Figure 4-17. Note that the source and sink are SCRL half-gates without a logic portion.

Rather than connect the t-gate to a logic portion, it connects directly to the appropriate

swinging supply rail. A source and sink for a zero value simply connect the t-gate to the

opposite polarity rail.

fphi one one rphi
(a) _ _(b) = D

Figure 4-17: SCRL constant (a) source and (b) sink.

4.3 Circuit and System Representations

The examples above have shown that it is possible to abstract away the low-level constraints

of SCRL logic from the system designer. The rules for symbol construction may now be
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formalized. Modules internally connected to one set of power clocks are treated first, i.e.,

blocks like the full inverter but not one full inverter driving another.

First, and perhaps obviously, a module's symbol must somehow indicate its logical behav-

ior. Conventional shapes for NAND NOR, XOR, and so on, are perfectly appropriate. Larger

blocks, such as half-adders, ALU's, and decoders, may have more complex shapes or mark-

ings. It is surprising how many designs use inadequately descriptive schematic symbols.

Second, a module must drive its output(s) according to SCRL timing constrains. This merely

implies that the t-gate at the output of the logic portion be connected to a pair of swinging

Pi and Pi signals and that the logic portion be connected to 4j and Oj.

Third, a full module must restore the voltage on its input nodes to Vdd/ 2 according to SCRL

timing constraints. A half module is exempt from this constraint. This rule is the key to

hiding circuit-level reversibility from the logic designer. The implication of this rule is that

a full module must have a reverse gate, connected to appropriate Pk and #1 signals, that

can compute the module's input value(s) using only the module's output value(s). Note

also that choosing a value of i or j for the forward gate sets the value for k and I for the

reverse gate, and vice versa.

Fourth, a module must have a single power-bus connection. In all the SCRL gate figures

above, each symbol has a single bus connection for all the swinging power clocks. This is

made very powerful by the conventions of "lollipop notation," treated below.

Modules created following these four rules may be easily combined to form more complicated

logic blocks. Additional rules for combining modules will be added in Section 4.3.2. The

complex blocks may themselves be treated as primitive modules and further combined. The

powerful tools of abstraction and hierarchy may thereby be brought to bear on reversible

system design.

4.3.1 Lollipop Notation

As mentioned above, each simple module must have a single bus connection to the power

rails. Early SCRL designs required super-human effort to keep track of supply connections.
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A non-inverting stage requires twelve distinct power clocks, and keeping track of which

clocks go where can quickly bring a designer to a grinding halt.

Just as circuit complexity can be hidden using hierarchy and a symbolic representation, so

too the power rail complexity can be hidden using a "lollipop" symbol to represent both

polarities of both the forward and reverse # and P signals for a full scRL logic phase.

Figure 4-18 shows the three-phase SCRL rail connections to five stages of an SCRL pipeline

in explicit detail. Each square represents a half-gate. The logic portion of the half-gate is

powered by the # rails indicated in the lower left corner of the square. The t-gate portion

of the half-gate is controlled by the P clocks indicated at the lower right. Each # and P

represents the positive and negative polarities of that rail phase.

1 7 4 1 7

P1 01 P2 02 P3 03 P1 $1 P2 $2

3 96 3 9 _

P3 05 PT $6 P2 $4 P53 5 PT $6

2 1 8 5 12 18

Figure 4-18: SCRL pipeline showing rail connections. This figure is based on work by
Younis [You94].

The numbers on the right sides of the upper squares and left sides of the lower squares

correspond to the times at which the P rails transition. The numbers on the top of the

upper squares and bottom of the lower squares correspond to transitions of the # rails.

The timing diagram is shown in Figure 4-19. A complete period of transitions for all nine

distinct clock pairs takes eighteen clock ticks.

If non-inverting stages are required, the situation becomes even more complex. Each non-

inverting stage is powered by its own clock pair, so if all three stages may be non-inverting,

fifteen clock pairs swing with a thirty tick period. This timing diagram is shown in Figure 4-

20. See Section 4.5 below for more details.

Figure 4-20 may also be described in table form, shown below. It may seem that I am

belaboring the point, describing the SCRL power clock timing in multiple formats, but
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Figure 4-19: ScRL power rail timing. This figure is based on work by Younis [You94].

understanding the timing behavior of these rails in all their complexity is important to the

design of the abstraction used below to hide this complexity.

To simplify rail interconnection, first notice that the rails may be grouped into three sets.

Two- or four-phase SCRL rails may be grouped into two or four sets, respectively. Each set

is composed of the dual-rail pair of forward Pi rails, the dual-rail pair of forward #j rails,

and the corresponding reverse Pk and #1 rails, for a total of four dual-rail pairs of rails in a

set. Each P pair of signals is used as forward controls in one set and inverted and used as

reverse controls in one other set. For example, the forward t-gate in the first pipeline stage

in Figure 4-18 is on when P1 is high, while the reverse t-gate in the second pipeline stage is

on when P1 is low. The t-gate control is denoted as P, in this case.

The # rails always appear in groups of two pairs, one forward and one reverse. For example,

in three phase SCRL, #1 and #5 share a set, #2 and #6 share a set, and #3 and #4 share a

set.

The three sets are therefore:
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Figure 4-20: SCRL
Younis [You94].

power rail timing, including "fast" rails. This figure is based on work by

0 #1, P1, #5, P3

* #2, P2 , #6, 1Pi

* #3, P 3 , #4, P2

If each symbol expects connections to the power bus to be in a pre-established order, say

forward-#, forward-P, reverse-#, reverse-P, a unit containing the appropriate rails for one

of the three sets, in the correct order, can be attached to the bus port, providing a simple

symbolic power connection to the symbol. The rail unit used is shown in Figure 4-21, and

because of its shape it has become known as a lollipop.

Connecting power rails to a schematic symbol is then as simple as connecting the appropriate

phase's lollipop symbol to the power port of the gate. Three full SCRL inverters connected

in a ring oscillator topology are shown in Figure 4-22. The phase one, two, and three

lollipop symbols are connected to each full inverter's power port. Further issues involved in

connecting multiple SCRL gates together are discussed in the next section.
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Table 4.2: ScRL rail timing transition table. A f represents splitting # rails or P and P
rails going high and low, respectively. A 4 represents # rails converging to Vdd/ 2 or P and P
rails going low and high, respectively. The numbers correspond to the points in Figure 4-20.
An f# labels a "fast" rail.

4.3.2 Combining Gates

Connecting multiple SCRL gates in sequence is as simple as counting 1-2-3 when they are

powered by lollipop symbols. Every gate powered by phase i must be driven by the output

of a gate powered by phase i - 1 and must drive only gates powered by phase i + 1. A

simple example of the output of a full NAND gate driving another full NAND gate is shown

in Figure 4-23. Note that inputs and outputs are not allowed to float; every wire must be

has 1

Figure 4-21: The phase 1 lollipop rail symbol. This symbol contains the #1, #1, P1 , P 1, #5,
43, P3 , and P3 rails.
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Figure 4-22: An SCRL ring oscillator.

connected to the input and output of a gate. The phase one powered gates drive phase two

powered gates, and every level of logic is a pipeline stage, requiring delay stages for signals

such as C, Aout, and Bout, to maintain proper timing relationships.

A- rail Aout

B Bout

rails AB
AB+C

C rol

Figure 4-23: An SCRL full NAND gate driving a second full NAND gate.

The rail timing sequence is circular, so a phase three gate drives a phase one gate. One

implication of this is that the shortest feedback paths possible requires a minimum of three

stages of logic. The ring oscillator mentioned above is a case in point.

A signal being driven from phase one may be some integer multiple of three too early or

late relative to other signals driven from phase one. To keep track of this, it is useful to

assign letters to each logic stage in a large, complex logic block. An N-bit ripple-adder, for

example, has at least N stages of logic, and while stages one, four, seven, and so on, are

all driven by the same phase rails, unless all signals pass through the same number of logic

stages, they will not arrive at the output edge of the block at the same time. Figure 4-27

shows this error. To correct for potential offsets of this nature, delay elements are frequently

required. Imagine a pipelined processor with on the order of 100 pipeline stages. Other
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than explicit data forwarding, each stage's output is an input to the stage immediately

following. If one output from stage 63 is not needed until stage 87, delay elements must be

inserted in stages 64 through 86. An SCRL circuit must obey this constraint as well as the

1-2-3 counting constraint imposed by the rail timing.

As with Ressler's Fredkin gate computer [Res8l], the designer must consider the schematic

to be cut into a set of "time slices." Signals must pass through a logic gate to move from

one time slice to the next. A NAND gate is a single slice; an ALU may have twenty or thirty

slices.

Each clock phase may be considered to be a fraction of a full clock cycle, and the schematic

for a full clock cycle delay element is shown in Figure 4-24. The rail connections are shown

explicitly for each of the six half-inverters in the cycle delay element. This module was

developed in the early stages of this work and therefore does not take advantage of later

hierarchical developments. Lollipop notation, however, is not appropriate in this case as

the rails are meant to be connected at a higher level of the hierarchy.

in out

o u2

Figure 4-24: A full clock cycle delay element.

Fan-out of a signal is a simple matter; a single gate can drive any number of gates as long

as they are powered by the appropriate phase rails. In conventional terms, fan-out is a copy

operation: the output of one gate drives more than one input of the gates downstream.

A gate takes some inputs, computes an output value, and fans out multiple copies of that

value to the inputs of other gates.

In a reversible computer, an expanding operation may be thought of as a fan-out that is
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more complex than a mere copy. The expanding reversible gate takes some inputs, computes

multiple outputs, and may fan out multiple copies of these multiple outputs to the inputs

of other gates. The NAND gate above performs a fan-out of A and B into something other

than copies of A and B.

Section 4.2.1 showed how multiple-input gate fan-in is constructed. More complex, from a

logic point of view, is the fan-in combination of two or more signals. The SCRL NAND gate

creates a redundant encoding of the information in the two input signals; the un-NAND gate

eliminates the additional signal. Recall that the NAND gate produces A, B, and A - B. At

some point, the A - B signal may be unnecessary. The symmetry imposed by most reversible

constructions requires that for each fan-out, copy or otherwise, there be a fan-in.

Eliminating the A - B signal is simple. A feedback gate with inputs A and B and appropriate

power clock connections will restore a node to Vdd/ 2 . This is simply the half-NAND gate

from Figure 4-13 turned backwards and connected to the appropriate rails. Figure 4-25

shows a half-NAND gate and two full inverters driving three full inverters on the left half,

and three full inverters driving a backwards half-NAND gate and two full inverters on the

right half. Each vertical column is driven by a single lollipop signal, ensuring proper rail

timing. Note that the half-NAND and half-un-NAND gates are only driven by the forward

or reverse set of rails, respectively. The "forward rails" and "reverse rails" symbols merely

pass through the appropriate <p and P signals.

Figure 4-25: An SCRL NAND and un-NAND logic block.

The signal fan-out of the expanding NAND operation is undone by the fan-in of the un-

NAND gate. Computation is performed, creating one intermediate signal, and once the

intermediate value is no longer needed, the computation is undone. Reversible systems, from
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the circuit level to the software level, exhibit this characteristic. This particular example

performs a trivial computation using the A - B signal, namely delay, but the inverters in

the middle of Figure 4-25, powered by the phase 2 and 3 lollipops, could be replaced by

more interesting computing elements, and more than just two logic stages.

Dual-rail Signaling and Signal Minimization

The topology shown in Figure 4-26, while common in conventional systems, is illegal in an

SCRL system. The inverter powered by phase one rails can not feed its output forward to

drive the inverter powered by phase three rails. This serves to illustrate the desirability

of both using dual-rail signaling conventions and of reducing the number of signals being

fed through a block. Dual-rail signaling reduces the need for inverters to generate the

correct logic polarity and reduces reliance on non-inverting SCRL gates with their associated

additional power rail complexity. Reducing the number of signals passing through a block

reduces the number of gates that are used only to re-time a signal.

Figure 4-26: Incorrect SCRL fanout.

While the circuit in Figure 4-27 may seem a simple feedthrough, remember that each logic

stage contains a built-in pipeline register. Signals driving in on the left edge at the same

time will not arrive at the NAND gate on the right edge at the same time. Additional

retiming gates, generally inverters, are required so that every signal is equally delayed. Just

as the Cray-1 used 20 or 30% its gates for delaying and terminating signal lines, so too SCRL

circuits use a substantial number of gates to properly time signals.
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Figure 4-27: An incorrect SCRL feedthrough schematic. The B input to the NAND gate
should have been delayed using a full cycle delay element.

4.3.3 Schematic Hierarchy

The reader now has at his or her disposal techniques for composing arbitrary logic gates,

attaching them to one another, including feedback, fan-out, and logic fan-in, and connecting

them to the appropriate power clocks. The next powerful tool for dealing with complexity

is hierarchy.

Connecting lollipops to the gates at each logic stage makes module re-use difficult. Con-

versely, passing supply pins up through levels of the hierarchy so that the lollipops may be

connected at a higher level increases module complexity. Proper system hierarchy design

requires a delicate balance between these two components. Note that fixing supply rail

connection hierarchy also fixes signal hierarchy. If a module has four lollipop connections,

for example, the signals coming in and going out of the module must fit in with the rest of

the system. The 1-2-3 rail phase ordering must be respected for lollipops and signals.

Most of the modules in the Pendulum processor occupy a single time slice. Rail connections

in this case are made simply through a single lollipop. An example of the Pendulum

hierarchical structure is shown in Figure 4-28. The lollipops are generally connected at the

"small modules" or "large modules" level. The "large modules" must be carefully designed

to fit in with each other. Delay elements may need to be added to ensure proper 1-2-3 rail

ordering.

A technique that was considered but not used was to pass the rails up through the hierarchy

using a generic A-B-C counting. These nodes could be connected to the proper 1-2-3

lollipops at the highest level. This was not done for two reasons. The first is that is was

largely unnecessary. The only two levels of hierarchy above the lollipop connections were
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large modules:

small modules:

single slices:

gates:

transistors:

TOPLEVEL

RegFile ALU PCU

Shifter addSlice etc

d yder XOR

NAND etc

transistors

Figure 4-28: A portion of the Pendulum processor hierarchy.

simple enough to understand that no extra effort was required. The second reason is that

the details of the lollipop timing are a detriment to understanding the toplevel data flow.

By putting the lollipop connections at a lower level, the datapath block diagram is more

easily understood. Only when the rail phases are relevant should they be explicitly shown.

It is, however, useful to know how many stages of logic are in a module and what phase

the modules inputs expect and outputs are driven on. This information may be added as a

note on the module's symbol.

The Pendulum processor has seventy-four stages of logic. The longest of the large modules

were the ALU and PCU, at thirty-two stages each. This level of complexity is by no means

beyond a competent designer.

4.4 Multiplexing and Shared Busses

Signal multiplexing is a very common tool in conventional circuits. This "many to one"

mapping is not allowed in a reversible computer because the single output contains no infor-

mation about the inputs that are not selected. A shared bus is also a type of multiplexing;

a number of signals connected to one set of wires through tri-state buffers may drive the
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bus one at a time. This too is a many to one mapping, and in fact multiplexers are often

implemented using tri-state gates. Shared busses are powerful and useful constructs for the

digital designer; a reversible version would be equally useful. The problem is keeping the

features of the many to one mapping while retaining all information.

4.4.1 The SCRL Tri-state Inverter

The first component needed is an SCRL tri-state gate. This enhancement to SCRL was not

envisioned by Younis and Knight [YK93, YK94, You94], and it is a contribution of this

research. A properly designed standard SCRL gate will always drive the output node to a

zero or one value when the supply rails # and ~ split to Vdd and ground. This is because the

pass gate at the output is always turned on before the rails split. By controlling whether

or not the pass gate turns on, the logic portion may be isolated from the output node. The

pass gate portion of an SCRL gate must be modified for tri-state operation.

To construct a tri-state inverter, we begin with the standard SCRL half-inverter from Fig-

ure 4-9. The desired behavior is shown in Table 4.3. The output value "hiZ" represents

a high impedance state in which the gate is isolated from the output node. The select, or

enable, signal Sel is passed through some other part of the system. It must have the same

SCRL timing as the input A.

in out
A Sel Zout

0 0 hiZ
0 1 1
1 0 hiZ
1 1 0

Table 4.3: The SCRL tri-state inverter truth table.

To make a tri-state full inverter, the input node A must be conditionally restored to Vdd/ 2 .

Unlike the standard SCRL full inverter, the tri-state full inverter must only restore its input

if it drove its output. If the output node is a shared bus, some other gate will have driven

a value on it. That value need bear no relation to the input node of any gates that do
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not drive the output bus. This is the whole point of a shared bus. Therefore, the tri-state

full inverter can not use the shared bus value to restore its input. It must therefore have a

tri-state reverse path. This implies that the reverse path must have its own select signal.

When not selected, a reversible tri-state not only does not drive its output, but it also

"ignores" its input.

Both polarities of the select signals are generally required. The symbol, therefore, of an

SCRL tri-state gate is shown in Figure 4-29. Note the separate forward and reverse select

signals, and the single lollipop-ready rail connection pin.

p air

s e I, se I 1rs e I, rs eI

Figure 4-29: The SCRL tri-state inverter symbol.

The modification to the pass gate portion of the SCRL inverter is straightforward. The select

signal controls a pair of t-gates, inserted to control whether the rail signals P and P can

connect to the t-gate between the internal node and the output node. The logic portion

remains unchanged; tri-state gates other than the inverter may be constructed by adding

the tri-state t-gate portion to a standard SCRL logic portion. In a proper SCRL tri-state full

inverter, the select signals are passed through the gate with a pair of standard full inverters.

The entire SCRL tri-state full inverter schematic is shown in Figure 4-30.

In the Pendulum processor, many of the tri-state gates used were modified from a library

of conventional tri-state gates. A standard cMoS tri-state gate is shown in Figure 4-31 (a).

The transistors controlled by the select signals are connected to the supply rails. An SCRL

tri-state logic portion may use this topology along with the tri-state t-gate portion without

changing the logical behavior of the gate. A power advantage may be realized because the

total capacitance attached to the swinging rails is reduced since the internal nodes of the

logic portion are disconnected from the rails when the select signal is not asserted. However,
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Figure 4-30: The ScRL tri-state full inverter schematic.

the additional loading on the select signals may offset this gain. The actual tri-state inverter

schematic used in the Pendulum processor is shown in Figure 4-31 (b). The select signals

must be passed through an external gate.

4.4.2 Using Reversible Tri-state Gates

To use the tri-state full inverter, or any other reversible tri-state gate in a logic block, the

designer must be careful to make sure bus contention is avoided and that one of the gates

restores each of the input nodes to Vdd/ 2 . Conventional design requires that bus contention

be avoided, but the constraint that the input nodes be restored is, of course, unique to

reversible design. This constraint leads to the general rules for using tri-state gates in a

reversible system. The first is that no information may be lost. This outlaws the use of

conventional-style many-to-one multiplexer mappings. Rather, tri-state gates are used in a

reversible system to "steer" information down one of many possible paths. The other paths

are entirely shut down, neither driving their outputs or restoring their inputs. A very simple
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(a)

sel

in out

sel

Figure 4-31: (a) A conventional CMOS tri-state inverter schematic and (b) the SCRL tri-state

inverter used in the Pendulum processor.

case is shown in Figure 4-32. The output node has the same logical state for either value of

the select signal, but the output is driven by the top inverter if the select signal is asserted

and by the bottom inverter otherwise. Note that since each tri-state full inverter contains

a path for the select signal, an optimization is possible by removing the select signal path

from the tri-state gate itself.

Figure 4-32: Simple SCRL tri-state application.

A somewhat more interesting case is shown in Figure 4-33 (a). The output node Z is driven
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to be either A or B. If the select signal is asserted, node A is inverted and drives the output

with A. Node A is also restored to Vdd/ 2 by the upper inverter. The lower inverter in this

case, however, neither drives the output nor restores node B. To maintain reversibility,

node B must not be driven by the previous stage. If it were, charge would be "stranded" on

node B, and energy would be dissipated at node B's next transition. Therefore, the logic

from Figure 4-33 (a) must be used as in Figure 4-33 (b). Again we see the symmetry of

reversible logic. The fan out on the left side of Figure 4-33 (b) has a matching fan-in on the

right side. Of course, Figure 4-33 (b) is a trivial example, but if the computation performed

on the upper and lower paths differ, the select signals select what function is executed.

(a) sel se sel r P rqI -el,rsel~ (b) s eI1.i- seise seIZ~re

sel sel r"57 eB eB,. oLo rselZ rselZ
B ra 1

p ir
sel,sel sel I rselrsel rselrsel

Figure 4-33: Multiple signals A and B driving a shared bus shown in (a), and the pairing

of fan-out and fan-in is shown in (b).

This "information steering" is a powerful tool for building reversible systems, and is the

reversible equivalent of a multiplexer. Reversibility requires that the multiplexer have a

de-multiplexer upstream from it. Using tri-state gates allows the designer to chose a com-

putation path for a signal and disable all other potential paths for that signal. Reversible

memory uses this technique; the address lines select either the recirculating storage path or

the output node for each bit in the memory. Only one bit may drive the output node at at

time; all others recirculate. See Section 5.2.4 for more details.

The Pendulum datapath also uses this technique. Each operand is passed along a tri-state

path, only selecting the logic that is being used to compute the function for that particular

opcode. For a one operand instruction, only one of the three register file output paths

is active. The ALU also has multiple paths, only one of which is active at at time. For

example, during the add operation, all other paths, such as for computing ANDX, XOR, and
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so on, are disabled. The disabled paths do not drive their outputs or restore their inputs.

All input and output nodes in a disabled path remain at Vdd/ 2 .

4.4.3 A Tri-state Optimization

If a signal passes through a long tri-state delay chain, an optimization may be possible.

Rather than pass the data and select signals through two long chains of delay elements,

the circuit may rely on charge storage of the data values at the beginning of the chain and

delay only the select signal. The data passes through a tri-state gate at the beginning and

end of the chain. The before and after topologies are shown in Figure 4-34. This design

was considered for the Pendulum processor but considered too risky for implementation.

Further investigation of this technique's usefulness is required.

A1

ra raG r

L[VL

l ~IP' p P 'rseusrpeT

A Z

Figure 4-34: A potential optimization for long tri-state delay chains. The top chain of
tri-state inverters may be optimized by eliminating the tri-state portion and keeping only

the delay chain for the select signals.

4.5 Non-inverting Gates

All of the logic gates discussed to this point have used inverting logic. Both polarities of

a signal may be required to compute certain functions, necessitating either that all signals

be run dual-rail or that some gates be non-inverting. This section covers the techniques for

creating non-inverting SCRL logic.

Non-inverting SCRL gates impose a penalty on the logic designer: substantially more power

clock rails are required. In three-phase SCRL, two additional pairs of rails are required for
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each logic phase that is to be able to perform non-inverting operations. Three-phase SCRL

requires eighteen rails in inverting form; thirty rails are required if all three phases are to

be able not to invert. These additional rails are generally called "fast" rails because they

split and collapse entirely within a standard splitting rail pair. The timing of a rail and

its fast complement is shown in Figure 4-35. The fast and slow rail are a retractile pair, a

version in miniature of Hall's retractile cascade [Ha192]. The full timing of all thirty rails

for three-phase SCRL is shown in Figure 4-20.

1 2 3 4 5 6 7 8 9 1011

Figure 4-35: One slow and fast rail pair timing. The fast rail is a retractile version of the
slow rail.

The fast rails power an additional logic portion between the original logic portion and t-gate

portion of an inverting SCRL gate. An SCRL half-buffer is shown in Figure 4-36. After the

input value is stable, the t-gate turns on and the "slow" rails split, just as in the standard

SCRL inverter. The input to the internal "fast" inverter is then stable and the fast rails are

split, driving the output node to a valid logic level.

The slow and the fast logic portions may be replaced with any static CMOS gate. To make

a half-AND gate, for example, a NAND gate may be followed by a fast inverter stage, as in

Figure 4-37. Or, to make a more complex detector gate, such as the Pendulum exchange

opcode detector shown in Figure 4-38, fast inverters on some or all of the inputs drive a

logic portion powered by the fast rails. The SCRL pipeline design ensures that all the inputs

to the fast logic portion are stable before the fast rails split, whether or not they are driven

by the slow logic portion.
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Figure 4-36: SCRL half-buffer schematic. The fphi and
35.

fphi rails are as shown in Figure 4-

Figure 4-37: An SCRL half-and gate. The inverting NAND portion is followed by an inverter
powered by fast rails.
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Figure 4-38: A pattern detector from the Pendulum processor using inverters on the input
signals. The inverters are simple two-transistor devices, not containing a t-gate. The
inverters are powered by the slow rails and the five-input OR gate is powered by the fast
rails.

Non-inverting tri-state gates may be constructed by adding the tri-state t-gate portion to

the two logic portions of non-inverting logic. Clearly, SCRL gate construction is a modular

process: a variety of inverting or non-inverting logic portions may be connected to a standard

or tri-state t-gate portion, creating a wide variety of logic gates.

4.5.1 Generating and Killing Dual-Rail Signals

Non-inverting logic stages may be combined with inverting logic to create a gate that

generates both polarities of an input signal. A dual-rail generating gate is shown in Figure 4-

39. The gate contains two forward portions, one inverting and one non-inverting, and one

inverting reverse portion. The Aout signal is used to restore the input, A, to Vdd/ 2 .

An optimization is possible, but was not used in the Pendulum processor, to reduce the

transistor count in the forward portions. Note that the input to the forward fast portion

is identical to the output node of the inverting logic portion. The inverter driving the

fast inverter may be eliminated, and the inverting logic portion may drive both the t-gate

connected to Aout and the fast inverter, as in Figure 4-40.
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Figure 4-39: An SCRL full dual-rail generation gate. Note that in this figure and other
full gates using fast rails, a leading f in a rail name indicates "forward," while a trailing f
indicates "fast." For the reverse rails, likewise a leading r indicates "reverse," so fOf is a
forward fast rail, and rof is a reverse fast rail.
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Figure 4-40: An SCRL full dual-rail generation gate, with one inverter unit eliminated.

Likewise, a "dual-rail-undo" gate may be constructed from a single inverting forward half-

inverter and two reverse gates, an inverter and a buffer. This two input, one output gate

is shown in Figure 4-41. Note that the reverse portion of this gate has the optimization

mentioned above, eliminating the additional slow inverter stage. The dual-rail circuits

here are simply a full inverter with an added half-inverter stage, either forward or reverse,

connected between the logic portion and t-gate portion of one of the half-inverters in the

full inverter. Care must of course be exercised when using this fan-in gate to ensure that

the two inputs signals really are always complementary.

Both the dual-rail generation and undo gates may be used as tri-state gates with the addition

of a tri-state t-gate portion on the forward output(s) and the reverse portion(s).

4.5.2 Connecting Non-Inverting Gates

During testing of the Pendulum chip, an interconnection error was found, shown in Figure 4-

42. The error arises from the rail timing difference between a signals driven by fast and
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Figure 4-41: An SCRL full dual-rail "undo" gate. Note the use of a leading f or r to indicate
"forward" or "reverse," and a trailing f to indicate a fast rail.

slow rails.

The output of a dual-rail-undo block and a buffer are connected together, performing fan-

in of two identical signals. The dual-rail signals wBrB and wBrB were generated from

the ALUopD<3> signal many logic stages ago. The signals ALUopD<3> and wBrB are

identical, and could have been merged at the outputs of the previous stage, potentially

avoiding this error. As it is, the output node InstrE<18> is driven by an inverting logic

stage and a "hidden" non-inverting stage. To reduce the complexity of the dual-rail-undo

gate, the output is driven by an inverter connected to the negative input, as shown above

in Figure 4-41. The buffer driven by ALUopD<3> has a non-inverting output stage, as

shown above in Figure 4-36. If the node InstrE<18> were driven either by two fast stages

or two slow stages, no error would occur.

Observe the sequence of events as the output node is driven. First, the input values are

driven to stable values, turning on one of the transistors in each of the two slow inverter

stages. Then the t-gate portions are turned on, connecting the output node to the internal

node of the inverting gate and through one of the slow inverter's transistors to a slow rail.
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wBrB wBrj

(a) w~r[ ra InstrE<18> ()II~r<a

ALUOp<3>

Figure 4-42: An error due to improper output connection of a dual-rail undo gate and a
buffer. Note that even though the two output values are logically identical, the timing
problem of connecting an output driven by a fast rail and one driven by a slow rail creates
a temporary short circuit. The gate-level schematic, which obeys all the SCRL connection
rules listed above, is shown in (a), and the underlying transistor-level schematic is in (b).
The dotted line indicates the short circuit path.
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As the slow rails split, the output node and the input to the fast inverter are driven to a

valid value. One of the transistors in the fast inverter is turned on, connecting the output

node to one of the fast rails. Observe that the output is at a valid logic level and the fast

rails are still at Vdd/ 2. A short circuit is momentarily created between one of the slow rails

and one of the fast rails at Vdd/ 2 . The path of the short circuit is from a slow rail, through

one of the transistors of the inverting gate, the inverting gate's t-gate, the non-inverting

gate's t-gate, one of the transistors of the non-inverting gate, to one of the slow rails. As

soon as the slow rails split, the output node is driven to the same rail and the short circuit

is between two nodes at the same potential. Depending on how quickly the fast rail splits

after the slow rail, enough current may flow to damage the circuit.

This error is disturbing not only because it may cause a circuit malfunction, but also

because it violates one of the SCRL constraints, namely that charge flow in a controlled

manner through the circuit. The short between two supply rails at different potentials

through a resistive element is an uncontrolled energy dissipation. The implication for the

design techniques presented in this dissertation is that even if two output signals have the

same value, they may not be connected together unless both are driven by either slow or

fast rails. This is an "ugly" constraint, requiring the designer know the implementation

details of two gates whose outputs are connected. Breaking an abstraction barrier this way

is distasteful, although the "workaround" is simple.

A better workaround is to use the "fast" rails as the default # connections in a gate, and

only use the slow rails for a non-inverting gate. This ensures that the outputs of all gates

will transition at the same time and that the inputs to all gates will be restored at the same

time, whether they are inverting or non-inverting.

4.6 Layout

Layout of reversible logic is very similar to conventional VLSI layout. The primary difference

is the large number of power supplies. For connecting individual gates to the supplies,

regularity makes layout easier. By using a standardized ordering for the supplies regardless
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of rail phase, a single gate layout can be used in any logic stage. The rails run in strips along

the chip, and the desired logic is inserted under the appropriate phase. The cells may abut

as in conventional standard cell layout. The power supply rails run horizontally in the top

metal layer and abut from cell to cell. Logic signals run vertically from one routing channel

to the next. To connect the rails for a series connection of logic levels, a vertical bus of all

supply rails runs below the top metal layer on the edge of the logic block. Appropriate vias

connect the top metal, horizontal rail connections to the vertical bus.

At the chip boundary, the rails encircle the chip core in a "ring of fire" made up of concentric

rings in the top metal layer. Each logic module's supply bus wires run to this ring and

connect up to the appropriate rail. Each of the concentric supply rings connects to a pad.

4.7 Chip Testing

The goal of this thesis is to demonstrate a viable design methodology for building complex

reversible systems. As such, it is relatively unconcerned with the actual energy dissipation

of the reversible systems constructed. To test the functionality of the integrated circuits

fabricated during this research, a suitable test board was needed.

Modern programmable logic devices, such as the Altera Flex 10K series parts used in the

Pendulum test board, contain substantial memory capacity, large numbers of output pins,

and a great deal of programming flexibility. One of the primary challenges of reversible logic

testing is generation of the numerous power clock rails. The tri-state output pin feature

of the Altera part was used to help generate the power clocks for testing XRAM and the

Pendulum processor. A simple resistive voltage divider, using pairs of 10kQ resistor packs,

was wired to the 3.3V supply on one end, to ground on the other, and to both the Altera

part and the reversible logic sockets. When the Altera output was set to high impedance,

the voltage divider pulled the middle node to Vdd/ 2 . At the appropriate time, the Altera

part drives the node to one rail or another, with a time constant determined by the RC

loading on that particular rail wire. The time constant could be changed by using a different

value resistor pack. The full swing P rails were simply driven by the Altera outputs and
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not attached to a voltage divider.

The signal pins on the reversible logic parts, both inputs and outputs, were wired to the Al-

tera I/O pins, providing maximum flexibility. The Flex 10K series contains enough internal

SRAM that it was used as the instruction memory for testing the Pendulum processor. Test-

ing revealed a bug, discussed in Section 4.5.2, in the instruction encoder. Other systems

were functional. The register file operation was verified, the ALU adder and both PCU

adders were operational, and a small (10 instruction) program of sequential instructions

was run correctly.

The board contained a socket for testing Pendulum and a socket for separately testing

the XRAM chip. While Pendulum did not function perfectly, the XRAM chip did. When

presented with an address, an enable signal, and eight bits of data, the memory chip was

able to perform the exchange operation at any desired location.

The power dissipation of the Pendulum processor chip was measured by noting the dif-

ference in current draw when the Pendulum chip was not socketed versus when the chip

was socketed. The Altera part and all supply rails were running identically in both cases.

The board used a 4 MHz crystal oscillator to clock the Altera part, so the rail ticks oc-

curred at that rate. The measured current draw was 610 pA, for a power dissipation of

2.0 mW at 4 MHz, or 0.5 mW/MHz. By comparison, the purpose built, low power adiabatic

processor AC-1 [ATS+97] dissipated approximately 0.1 to 0.2 mW/MHz when running in

the tens of MHz range. Conventional mainstream microprocessors dissipate approximately

50 mW/MHz.

4.8 Conclusion

The old standby tools of abstraction, hierarchy, and clear symbolic notation, are just as pow-

erful when applied to reversible circuits as to conventional circuits. This chapter presented

a suite of tools and rules that have successfully been used to design three fully reversible

integrated circuits.
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The valuable lessons learned from these design experiences are that reversible modules are

fairly easy to construct. The reversibility of each gate and supply rail connections to each

gate can be hidden with appropriate abstractions. Interconnecting modules is as easy as

counting to three, and layout is comparable to conventional CMOS standard cell layout.
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Chapter 5

Reversible Memory

This chapter discusses the design of fully reversible memory systems. It covers the basics

of reversible memory design, as well as the details of a number of different implementation

styles, including SCRL circuits. The complete memory system design presented in Section 5.2

is a suitable component for a reversible computing system.

The literature contains a number of adiabatic and partially-reversible memory system de-

signs. Hall's description of a reversible instruction set [Hal94] touched on the idea of

exchange-based reversible memory operations but did not discuss implementation issues.

Tzartanis and Athas [TA96], Somasekhar, et al. [SYR95] and Avery and Jabri [AJ97] have

proposed memory systems which use some form of energy recovery. It must be empha-

sized, however, that these are not reversible memory systems. They are merely traditional

memory designs with some degree of energy recovery performed during operation.

5.1 Reversible Memory Design Styles

From a system point of view, the only additional requirement of a reversible memory, beyond

a traditional memory system's function, is that it not erase bits when it is read from and

written to. The memory must of course perform as a random access memory, allowing bits

to be stored and retrieved. Erasing a bit means that at some point in the operation of
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the memory the value stored on some node is lost. This occurs when an operation such as

Landauer's RESTORE TO ONE [Lan6l] is executed.

An exchange-based memory is reversible, and if implemented in a reversible logic style, does

not erase bits. Bit erasure can happen as a fundamental side effect of the operation of the

memory or as a function of the particular implementation. For example, one can imagine

a memory in which the externally visible values being stored and retrieved are never lost

but the implementation of the memory is such that intermediate bits are erased internally.

The next subsection deals primarily with the higher level issues of avoiding bit erasure.

Avoiding bit erasure in the lower-level switching circuit implementation is discussed in the

subsequent subsections.

5.1.1 Irreversibility of Conventional Memory Architectures

The architecture of a memory is the high-level specification of how the memory is accessed.

A traditional SRAM architecture is based on read/write operations. An address is presented

to the memory and, based on a read/write and possibly an enable signal, a word of data is

read from or written to the memory array. Data may be read from any location an arbitrary

number of times, and data written to a location overwrites that location's previously stored

data.

Reading a value does not at first seem to pose any difficulty to a reversible computing

system. Reading from a standard memory creates a copy of the stored value and sends it

to another part of the computing system. An arbitrary number of copies may be created

this way. If, in a reversible system, the overall system can properly manage these copies,

the memory need not be concerned with them. The larger system will, however, probably

exhaust its ability to store or recover the bits generated by the production of an arbitrary

number of copies. So it is a desirable feature of a reversible memory not to be a limitless

source of bits when used in a larger system. It must be emphasized, however, that copy

itself is not an irreversible operation.

An irreversible memory performs explicit bit erasure during writes because the previously
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stored value is overwritten and lost. A reversible memory must save those bits somehow.

The specific mechanism for this may vary.

5.1.2 Access through Exchange

Mechanisms to rule out bit erasure may be realized in a number of ways. For example,

reads may be performed destructively, as in a DRAM, to avoid producing copies of the data.

The information is moved out of the memory rather than being copied from it.

During writes, the value which would be overwritten could be pushed off to a separate

location. This only postpones the problem until later since any finite capacity storage will

be filled eventually.

If the separate location is accessible to the programmer, that data may either be useful or it

may be possible to recover the space by undoing earlier operations. So if a write is preceded

by a destructive read, the old information is moved out of the memory and into the rest

of the system, and the new information replaces it in the memory. The old value has been

exchanged for the new value. This type of eXchange RAM memory architecture, or XRAM,

is the primary focus of this chapter.

The initial condition of the memory may be specified to be entirely clear, so that the first

writes do not overwrite any information, or the system may tolerate some bit erasure at

startup until the memory is filled. If the memory starts up in some unknown state, the

results of computations performed using those unknown values will also be unknown.

The use of exchange operations avoids the need for a "garbage stack" [Res81]. The ac-

tual exchange operation is not generally useful, in that programs most often interact with

the memory as if it were performing loads and stores, loading previously stored values

by inserting place-holders in their locations and storing values to locations known to be

clear. Certain techniques can take advantage of the exchange beyond this load/store usage.

Hall [Hal94] has written a sorting routine which uses exchange effectively.

The essential insight of the XRAM is that performing a read and then a write to the same

memory location does not lose any information. One data word is moved out of the memory,

79



leaving an empty slot for a new value to be moved in. In general, moving data rather than

copying is a valid technique in reversible computing for avoiding bit erasure on the one hand

and avoiding producing large amounts of garbage information on the other.

If controlled information erasure is desired, a system could contain a "memory mapped

bit bucket." An exchange with this location could always produce a zero value out. No

explicit exchange instruction is needed, simply a place to send information from which it

never returns.

The details of the memory interface and implementation may vary. The following subsec-

tions discuss in some detail three different exchange-based memory architectures. All of

them are completely reversible and do not erase information in any stage of their operation.

The first, using charge-steering logic, was developed during the summer of 1996. Charge-

steering logic is a design style based on using complementary transmission gates to direct

the path of a logic signal. Some number of adiabatic clock phases, generally around six,

power the system. These power clock signals are conditionally steered to the inputs of other

transmission gates.

The second style uses Fredkin gates [FT82] to perform a series of bit exchanges to push

the desired value out. Bits are repeatedly exchanged in the memory array in a butterfly-

style network, and the amount of shuffling is determined by the XOR of the desired address

and the previously accessed address. This approach to reversible memory design is not

particularly successful because of its scaling behavior and wiring complexity.

The third style, SRAM-style reversible memory, is based on a traditional memory array

flanked by address decoders. The bit cell resembles a Fredkin gate but uses reversible tri-

state gates so that the data can be written and read on a set of shared busses. This shared

bus design improves the scaling and wiring behavior of the memory over the Fredkin gate

memory.

The XRAM chip, discussed in detail in Section 5.2, was designed in the SRAM-style. It

has been fabricated in a 0.5 pm CMos process. It uses Younis and Knight's three-phase

SCRL [YK94] logic family to build aii eight x eight memory with three-bit address decoders.
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Continuing research has uncovered various improvements to the design which reduce the

number of transistors in the bit cell. The XRAM memory block was used with minor modi-

fications as the register file of the Pendulum reversible processor analyzed in Part III.

It is worth noting here that the simplest way to perform a reversible exchange is to connect

two previously isolated nodes of known capacitance to each other through a known induc-

tance. For equal-value capacitances, the period of oscillation is 1rv/2LC. This technique

uses lossless elements to physically exchange the charge stored on one node to the other.

Insofar as CMoS circuits use lossy elements and do not use inductors, this technique is not

useful.

In circuits using lossy switches, an exchange is performed as a series of steps. One technique

is to measure the charge on one node and conditionally change its value based on the value

of the other node, executing a conditional toggle. Another technique is to copy the stored

value out of the memory and clear the storage location. The clear location is then available

to receive a new value. This second multi-step technique of copy-clear-set, rather than

conditional toggle, is the exchange technique used in the charge-steering logic memory. The

SRAM-style memory performs a similar exchange. The Fredkin gate memory does not have

bit cells in the traditional sense.

5.1.3 Charge-Steering Logic

Charge-steering logic (CSL) is a design style based on using complementary transmission

gates to direct the path of a logic signal. It is similar to pass gate logic, but it uses a number

of resonant clock phases to power the system. These power clock signals are conditionally

steered to the inputs of other transmission gates. Energy flows into and out of the system

through these non-dissipative, resonant power clocks.

Circuits constructed with charge-steering logic are quite different from SCRL circuits. Use

of charge-steering logic for reversible circuits is a novel technique and is discussed in some

detail here. Both CSL and SCRL logic styles use a set of resonant power clocks to power the

circuits, but CSL rails are all full swing, as opposed to the set of half-swing SCRL rails, and
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generally fewer in number than SCRL rails. Both techniques are pipelined, with a separate

path for injecting and removing energy into and from the circuit. SCRL circuits do this

through a more formal set of forward and backward logic blocks while CSL circuits are at

this point more purpose built and ad hoc.

It is also useful to remember in the discussion of reversible memory that the various imple-

mentation strategies may be decoupled from the basic reversible operations, such as using

exchange to access memory. Reversible operations may be implemented in a non-adiabatic

circuit family, although generally only for pedagogic reasons or simulations. The XRAM chip

and the Fredkin gate memory were both designed using SCRL because of designer familiar-

ity and because it is known to be useful for designing integrated circuits. Charge-steering

logic was investigated as part of a search for the simplest style of memory implementation

(essentially by measure of transistor count), and so the implementation style in this case

drove the memory topology.

The basic structure in charge-steering logic is a transmission gate (t-gate), which can be

modeled as a bidirectional switch controlled by a single signal (actual implementations are

dual-rail). If the control input b is wired to a capacitive node and one of the bidirectional

nodes is wired to a clock that swings from low to high, the value of the other bidirectional

node will be a copy of the capacitive node, as shown in Figure 5-1(a).
cloc 2

copy
copy

b
b

(a) clock - (b) clock1 -

Figure 5-1: (a) Charge-steering logic copy. (b) Charge-steering logic clear.

This structure can be used to perform a non-destructive read (copy) of the bit stored at b.

This is the first stage of a copy-clear-set exchange access. The copy is at a valid value while

the clock is high.

The next stage is to clear node b, by recovering the charge stored there, before the new
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value is written. Using copy as input to a second t-gate, clock 2 is swung from high to low

and b tracks it from high to low if it was high (the t-gate is on), and left untouched if it was

low initially. The requisite structure is shown in Figure 5-1(b). When the copy is made, if

b was high, the second t-gate is switched on. Both sides of the gate are known to be high.

When clock 2 swings low, the charge stored at b is returned to the power supply. Had b

been low, the first t-gate would have been off and copy would have remained low, so b would

not be connected to clock 2 and b would have remained low.

Note that at this point, copy is a copy of the original value of b and the capacitive node

b is known to be zero. No information has been erased and the entire operation has been

reversible.

Putting a pair of t-gates in parallel creates a dual-input gate (a dual-rail version would have

four inputs). Replacing the single input gates of Figure 5-1(b) with these dual-input gates

allows signals to be passed forward. Connecting a number of clearing structures in series

creates a shift register, in which values are passed along, copied from b to copyl to copy2

and so on, shown in Figure 5-2 [ASK+94]. Each node is then cleared non-dissipatively, so

the values are moved along the shift register.

cloc 1 cIO 3

copy 3

b
py 2

clock 2 clock 4

Figure 5-2: Charge-steering logic shift register.

To use the structure of Figure 5-1(b) as part of a memory cell, a t-gate must be added

to write the new value. The new value is effectively copied to b from Din, as shown in

Figure 5-3. The value on node Din is cleared by another t-gate, and the copy created is

sent on to a later circuit.

The timing of clocks one, two, and three are not shown in these figures, only their initial
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clock _f~

Figure 5-3: Charge-steering logic write.

and final levels. In Figure 5-3, the clocks swing sequentially: one, two, three.

Figure 5-3 is essentially a single bit cell for a charge-steering logic memory. The operation

is fully reversible and non-dissipative. No information is lost. A value is moved from the bit

cell storage node, b, to copy where it may be sent along and used for other computations.

A new value is written to the storage node when Din is moved into b.

The next challenge is to gate the clocks to address one of some number of bit cells. Ad-

dressing is performed by steering another clock through a tree of t-gates. The control for

the t-gates is provided by the address bits. A two bit decoder for a single clock is shown in

Figure 5-4.

0 

o,

cclock 0

G
clc 

clock 1

clock 2

clock 3

Figure 5-4: Charge-steering logic two bit decoder.

With a pair of valid address bits, clock swings from low to high. Exactly one of the four

output clocks is driven high and may be used to gate a value into a bit cell. Once the

exchange is performed, the input clock is then retracted, then the address bits are retracted.

This operation is similar to Hall's "retractile cascade" [Ha192] and is fully reversible and

non-dissipative.
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A full schematic of the address decoders, four bits of memory, and a recirculating shift

register path, is shown in Figure 5-5. The address inputs are assumed to be generated by

Figure 5-5: Charge-steering logic four bit memory schematic.

some other external, reversible control circuitry. For simulation simplicity, values read out

are passed through a simple shift register and recirculated back to the memory. This models

the computation system to which the memory is assumed to be attached. The only other

inputs to the memory are resonant clocks. The design is fully reversible and asymptotically

non-dissipative.

85



5.1.4 Fredkin Gate Memory

This memory design was developed primarily to examine the difficulty of building a memory

out of Fredkin gates [FT82]. The Fredkin gate, shown in Figure 5-6, has three inputs and

three outputs. It is both universal and reversible. The gate swaps the B and C inputs

A A' =A

B - B'= AB + AC

C C' = AC + AB

Figure 5-6: The Fredkin Gate

if the A input is zero; otherwise all three inputs are passed unchanged to the output. It

is therefore its own inverse, as passing a set of signals through two series Fredkin gates

always restores the original values. In most discussions of Fredkin gates, a unit delay for

each signal path and a fanout limit of one is also assumed. For larger fanouts, buffers can

be constructed from additional gates, at a delay penalty.

As the purpose of this design was to investigate gate-netlist-level issues, the underlying

implementation of the logic gates was deemed unimportant, other than that it be reversible.

The Fredkin gates used in the memory were implemented with dual-rail signaling and SCRL

logic in these simulations. This is not an especially efficient way to build Fredkin gates:

each gate is comprised of 96 transistors. An existing cell library infrastructure and designer

familiarity strongly influenced the decision to use SCRL. It is important to note that Fredkin

gates could also be implemented in other logic styles, such as the charge-steering logic of

Section 5.1.3.

A properly wired Fredkin gate is a one-bit exchange RAM. The A input is the (decoded)

address bit. It is passed through to the A' output. The B input, wired to the B' output,
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forms a recirculation path for the stored bit. The C input and the C' output are the

data input and output, respectively. If the single bit location is not being addressed, a bit

entering the memory at C is passed though to C', and the stored value is recirculated from

B' to B. If the bit location is addressed, the stored value is sent from B to C' and the new

value is sent from C via B' into the recirculation path. This "conditional-exchange bit cell"

forms the basis for the all-Fredkin-gate memory described in this section, as well as for the

bit cell of the XRAM design described in Section 5.2.

Some of the more "obvious" ways to extend a one-bit memory to larger capacities must be

ruled out when not only the system, but also its constituent gates, are to be reversible. For

example, it would appear that n one-bit memories connected in parallel could be connected

to single input and output lines by a 1-to-n buffer and an n-to-1 multiplexer; but multi-

plexers are not reversible, since all input bits but one are lost. Another idea is to connect

n bit cells in series, pass the incoming data bit down the chain, and perform an exchange

operation at the proper bit. The latency of such a memory would clearly be proportional

to n, which would limit its usefulness.

This design instead extends the one-bit memory by expanding each recirculation path to

encompass several Fredkin gates. The gates constitute a shuffling network, which connects

one of the recirculation paths to the I/O paths, in the same manner as for the one-bit

memory. A seven-bit example of such a memory is shown in Figure 5-7. All signals are

dual-rail. Seven feedback paths connect the output of the shuffling network to its input.

Three address bits, and therefore three columns of Fredkin gates, are needed to select one

of the seven paths for exchange; the all-zero address causes the input datum to be passed

through to the output.

The shuffling network can select any bit for exchange, but as a side effect, it shuffles the

remaining bits in the memory core. To compensate for this shuffling, it is necessary to

modify the address for the next access. With the butterfly network shown in Figure 5-7,

this pre-computation is simple: the address is XORed with the previous address before being

sent to the memory.

Accesses with the address zero cause no perturbation of data in the memory and so must
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Figure 5-7: Seven-bit butterfly memory.

be excluded from pre-computation. Addressing the same location twice always produces

an XOR of zero, so must also be excluded from pre-computation. These exceptions are to

account for the addition and removal of data from the memory through the I/O ports.

The latency of this memory grows as log(n + 1), where n is the number of bits. However,

the number of Fredkin gates grows as n-1 x log(n + 1). This scaling behavior is clearly

undesirable. Wiring complexity also becomes unmanageable as the number of bits increases.

Note, however, that networks of other topologies could be used in place of the butterfly

network. It would also be possible to trade off wiring complexity for logic complexity

by introducing extra columns in the memory array. These possibilities have not been

investigated further. The rich theory of shuffle networks suggests that further study might

be rewarding.

In summary, the Fredkin-gate-based memory described here is intriguing in its use of a

perfect-shuffle network. At present, however, wiring and logic complexity limit its appeal.
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5.1.5 SRAM-style Reversible Memory

Conventional SRAM bit cells are based on the notion of a recirculating data path. In a

CMOS memory cell, the data is held by a recirculating path made up of two cross-coupled

inverters. When a bit cell is written and changed, the inverters "fight" with the bit lines

and lose, toggling the value stored in the cell. When the cell is read, the cross-coupled

inverters drive the stored value, non-destructively, onto the bit lines where it is amplified

and sent on. All the bit cells in a single column share, through time multiplexing, single

bit line. This time multiplexed single wire driven by multiple signal sources is known as a

shared bus. Cells that are not being read or written have a high-impedance connection to

this shared bus. A cell stores both polarities of the bit, and, when selected, reads or writes

one polarity to each of the bit lines.

The distinguishing feature of an SRAM-style memory is that it has an array of bit cells that

grows linearly with the number of bits in the memory, arranged in a number of multi-bit

word rows, and a set of shared bit line buses. Address decoders drive word-lines along the

rows to select one of the words. The basic architecture of a reversible sRAM-style memory

is not fundamentally different from a traditional irreversible SRAM.

Making this type of memory reversible presents a number of challenges. The use of a shared

bus requires the use of a multiplexer or tri-state gate made in a reversible logic family. The

address must be decoded and sent to the array with the correct timing. And the bit cell

must be able to hold a bit and perform a reversible exchange, while interfacing correctly

to the shared bus. Some of these challenges also apply to the charge-steering logic and

Fredkin gate memories. The next section describes in detail the design of the XRAM chip,

an SRAM-style memory.

5.2 The XRAM Chip

The XRAM chip is a fully reversible implementation of a reversible memory architecture. The

chip has been fabricated in a 0.5 pm CMOS process. Instead of reading and writing from and
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to the memory separately, memory locations are accessed with an exchange operation. The

value stored is read out and a new value replaces it. No information is lost in this process

and it is therefore reversible.

The design was intended to be a proof of concept with an eye to reusing the XRAM design

as the register file and memory of the Pendulum processor. The modifications to the XRAM

chip are discussed in Section 8.2.2. The primary difficulty was the addition of "glue logic"

to use the single-port XRAM as a triple-ported regfile.

5.2.1 Top Level Architecture

The memory is arranged much like a traditional SRAM. A block of address decoders at the

input drives dual-rail word lines across the array of eight 8-bit words. Each bit cell in a

selected word drives a bit line. Since this is a reversible memory, however, all the input

signals must be passed through the chip to be sent back to the part of the system that

generated them. In particular, the addresses have to be re-encoded at the output.

The memory's inputs are an enable signal (EnIn) and its complement, three address bits

(Ain) and their complements, and eight bits of data (Dataln). It outputs the same en-

able signal (EnOut=EnIn), the same address bits (Aout=Ain), and eight new bits of data

(DataOut). DataOut is the value previously stored at the addressed location, i. e.,the value

being read from the memory. The value of Dataln replaces DataOut as the value stored in

the memory at address Ain. Figure 5-8 is a diagram of the XRAM input and output signals.

This memory architecture performs trivially a reversible operation. To reverse the process,

EnOut, DataOut, and Aout are used as inputs to the memory, which then outputs EnIn,

Datain and Ain, the values with which the whole function started.

The exchange operation in a single bit cell is conditional on the select bit. Therefore, there

are two modes of the bit cell: holding and exchanging. Holding describes the mode in which

the cell is not being selected and is therefore holding its current value. Exchanging describes

the selected mode in which a value is read in while the previous value is read out.

90



Dataln

18

EnIn
EnIn

Ain

Xin T

EnOut
EnOut

Aout
( Aout

t8

DataOut

Figure 5-8: Top level design of the XRAM chip.

Because non-inverting stages require additional power-clock rails in SCRL, it is advantageous

to have both a signal and its complement available as inputs to logic functions. Thus, dual-

rail logic was used in most of the circuit design.

The memory has a latency of five clock phases because of the inherently pipelined nature

of SCRL circuits. The address decoding is done in one phase, the memory-cell latency (from

data in to data out) is three phases, and re-encoding the address takes one phase.

The top level schematic of the XRAM chip is shown in Figure 5-9.

Figure 5-9: Top level schematic of the XRAM chip.
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5.2.2 XRAM Bit Cell

The XRAM bit cell is a three-input three-output logic gate. The block diagram is shown in

Figure 5-10. Like the Fredkin gate memory cell described earlier, the B input is wired to

the B' output to form a recirculating path. The A input is tied to a word select line, the C

input is tied to the input bit line Dataln, and the C' output is tied to the output bit line

DataOut. The bit cell behaves like a Fredkin gate memory cell when A is high: the values

on B and C are exchanged. The previously recirculating value is passed to DataOut, and

the new value at DataIn is passed to the recirculating path.

Recirculate

B__ B'

DataIn -- No- - C' DataOut

Selectin - A A' Selectout

Figure 5-10: Block diagram of a bit cell.

When the A bit is low, the gate behaves differently than a Fredkin gate memory cell. The

B input is still passed to the B' output, but the C input is ignored and the C' output is

set to high impedance. It is the use of tri-state buffers that allows the bit cells to occupy a

shared bus. This design gives the XRAM memory better scaling behavior than the Fredkin

gate memory described above.

5.2.3 Address Decoders

SCRL design style dictates that each logic function be cross-coupled with its logical inverse

for charge recovery. Therefore, an SCRL decoder is implemented by cross-coupling a standard

decoder and encoder. The decoder is the forward path, and the encoder is the return path.
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The top-level design of the XRAM chip requires the address bits to be re-encoded at the

output. Similar to the decoder, an SCRL encoder uses a standard encoder as the forward

path cross-coupled with a standard decoder as the return path. Hence, an SCRL encoder is

the same circuit as an SCRL decoder, the only difference being which terminals are used as

the input and which are used as the output.

The decoder/encoder design illustrates an important property of scRL circuit design: once

a logic function has been designed, the inverse of that function is often a trivial extension.

Using the input as the output and the output as the input inverts the logic block. This

property of SCRL design can be exploited to ease design and layout.

The decoder also incorporates an enable bit. When the XRAM is enabled, the address bits

are decoded as usual, selecting one word line. However, when the XRAM is disabled, all

word lines are deselected, so all the memory cells hold their state.

The reversibility of the decoder/encoder circuit is complicated by the addition of the enable

bit. When the memory is deselected, the address bits are ignored. The state of the word

lines does not depend on the particular address at the input. It may seem that information

is lost and reversibility is destroyed by this operation. When the encoder is presented with

no selected word line, which address should it generate for output? The solution is that

the encoder sets all the output address bits to high-impedance. Reversibility is not broken

with this procedure if the XRAM is incorporated into a reversible, shared bus structure as

described below. This scheme also preserves the complementary design of the decoder and

encoder; they remain inverses of each other.

The particular implementation of XRAM described here is an eight-bit by eight-word array of

memory. The address decoder is a 3:8-bit operation, and the encoder is an 8:3-bit operation.

5.2.4 XRAM Shared Bus Design

As mentioned above, the XRAM chip uses a shared bus architecture for the bit lines. All

the bit cells in a single column share, through time multiplexing, a single bit line. This

time multiplexed single wire driven by multiple signal sources is known as a shared bus.
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Tri-state SCRL gates are also discussed in Section 4.4.

The difficulty in constructing a reversible bus arises from the inherent irreversibility of a

multiplexer. A simple two-to-one multiplexer takes two inputs and a select bit and outputs

the value of one of the inputs. The second input is ignored. This is clearly irreversible since

the value of the non-selected input can not be determined from the value of the output and

the select bit.

One conventional implementation of a shared bus or multiplexer is a set of tri-state (high,

low, and high-impedance) gates whos outputs are wired together. Exactly one of the tri-

state gates is allowed to drive the shared wire. Likewise, a decoder may operate by having

an input signal passed through to exactly one of many output wires.

Using an SCRL tri-state gate as part of a multiplexer driving a shared bus introduces a

problem in the energy recovery at the input node of a tri-state gate that is not driving the

bus. Since the reverse path is also in a high-impedance state, the input node is isolated

from the energy recovering reverse path. This problem is solved by guaranteeing that the

input node was not driven by the previous stage. How then are any signals ever driven?

The answer is that a shared output bus must have a symmetric input bus earlier in the

pipeline. The shared input bus, a decoder (the dual of the multiplexing shared output bus),

drives exactly one of the outputs. The other paths in the pipeline are in a high impedance

state from that point in the pipeline until the shared output bus. A block diagram of the

fan-out, memory elements, and fan-in is shown in Figure 5-11.

Memory ElementM

ata Fan-out Fan-in Data
\ to one from m

n of m to one n

n E n

Figure 5-11: Memory system fan-out and fan-in.

The system must guarantee that the gate that is driven by the input shared bus will recover
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the value stored on the bus, and that the one pipeline path that passes a value to the output

shared bus will use that value to recover the energy back along that path.

5.3 Conclusion

Since reversible circuits are generally fairly large and complex, it may be advantageous

either to design a circuit which takes advantage of reversibility at some low level, such as

the Ftedkin gate-based memory, or to design a reversible circuit based on a very simple

conventional circuit. The Fredkin gate memory presented in this chapter is elegant but not

particularly suited to a traditional CMOS implementation. The other memory designs are

more reasonable, but are still large since they are static memories.

One solution to the size and complexity of reversible SRAM is may be to use dynamic

memory. A conventional dynamic RAM is very simple, needing only one transistor and a

capacitor to store a bit. Leakage is of course irreversible and dissipative, but does not have

a thermodynamic lower bound. A reversible DRAM, especially one constructed in scRL, will

be substantially different and more complex than a conventional DRAM. The problems with

overwriting a stored value still exist, but may be addressed by incorporating writing into

the refresh logic.

This work investigating various possible designs of reversible memory will undoubtedly lead

to improved techniques, and the experience of designing complete integrated circuits in

different reversible logic families has led to better understanding of the design tool require-

ments and methods specific to reversible computing.
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Chapter 6

Design Example: A Bitsliced ALU

The Pendulum processor's bitsliced ALU is a good example of a fairly complex reversible

module built using the techniques from Chapter 4. It is a fully combinational module; mem-

ory issues are covered in Chapter 5. This chapter covers the low-level details of perform-

ing reversible arithmetic and the timing difficulties arising from a module with twenty-six

pipeline stages and six extra delay stages to match the ALU output to the PCU output.

Details of how the ALU fits into the Pendulum datapath are covered in Part III.

6.1 Functional Description

The Pendulum ALU performs four 12-bit arithmetic and logic operations: add, andx, orx,

and xor. The andx and orx instructions are logical AND and OR followed by an XOR,

respectively. These two instructions require three operands, performing Z+ = (A- B) E Z

and Z+ = (A+B)eZ. The addition and XOR instructions require two operands, performing

A+ - A +B and A+ =A&G)B.

The ALU also encompasses a shifter which performs left and right logical shift, right arith-

metic shift, and left and right rotate. All shifts and rotates are by one bit position. The

shift operations are followed by XOR, e.g., producing Z+ = (A>>> 1) E Z. Shift operations

take two operands while rotates take a single operand.
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Addition is performed with a straightforward ripple-carry. No carry lookahead or other fast

arithmetic operations are performed.

The ALU symbol is shown in Figure 6-1. It takes in three twelve-bit operands, a dual-rail

direction signal, two decoded control buses, and the dual-rail five-bit opcode. One control

bus is for the shift operations, the other is for the arithmetic and logic operations. Each

bus is fourteen wires wide, encoding seven signals in dual-rail pairs. The three operands

are single polarity; all other signals are dual-rail, for a total of seventy-six wires entering

the ALU.

CA LU controls< 13:0> doutAA~doutAA

hPift r ontrois<13:o> AshAF,XshXFBselAF,B ie-IZhFZiX

pcoded < :0> OpOut<4 0 > Out<4:0,>

An<10>

-- -ZO ut< 11:,0 >
D ZIn< 11:0> AO ut <11: 0>

Bout< 11:0>

D Bl 110

Figure 6-1: The Pendulum ALU symbol.

During the course of execution, some of the fully-decoded control signals are re-encoded.

The total of twenty-eight input control signals were originally decoded from the five dual-

rail opcode signal pairs, so the opcode value can be used to re-encode the control signals

when they are no longer needed. At the output of the ALU, only three dual-rail signal pairs

remain. The direction signal, the opcode, and three result signals are also output, for a

total of fifty-four wires.

From input to output, each signal passes through thirty-two levels of logic. The first logic

level generates both polarities of the three operands and computes two more control signals.

The next 24 levels perform the arithmetic and logic operations. Twelve levels are necessary

for the 12-bit ripple carry add. The shift operation is performed in the first four ALU

stages. The operands are then sent through nine delay stages to synchronize the shifter
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output with the arithmetic and logic output.

The next twelve levels perform an "unadd" operation; the need

Section 6.2.5. Operands and results from instructions other than

delay stages to synchronize the values with the unadd output.

Stage twenty-six combines the dual-rail operand signals back into

encodes a control signal. The final six stages are delay elements

time of the ALU to that of the PCU. The block diagram is shown

stage

B |

1 2 - 14 15 -26

Reverse ripple add chain
12 time slices

for unadd is covered in

add are sent through 12

a single polarity. It also

to match the execution

in Figure 6-2.

27 28-33

Figure 6-2: The Pendulum ALU block diagram.

The control signals that pass through the ALU are encoded as soon as they have served their

function. The processor's instruction decoder computes some ALU control signals from the

opcode; since the opcode is passed through the ALU, the information necessary to un-

compute the control signals is readily available. One of the challenges of reversible system

design is not only to ensure that information is not discarded but that it be available and in

a suitable form in the right place at the right time. The technique of encoding information

as soon as possible is an efficiency optimization intended to simplify the designer's task.

The primary benefit of re-encoding quickly is that fewer signals must be routed through

the downstream logic. The drawback is that quite a few small encoding blocks must be

specially designed.

The adder computes modulo addition, with no overflow. To keep the processor simple ex-

ceptions and interrupts are not handled; computing an overflow bit turns addition from a

non-expanding operation to a more complex conditionally expanding operation. The ALU
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also does not support a programmer-visible subtraction operation. It is capable of perform-

ing subtraction but only as an addition performed in reverse. That is, when the direction

bit is set to reverse, the add opcode causes a subtraction to be performed. Subtraction was

excluded merely to simplify instruction decoding. Subtraction is implemented by invert-

ing the B operand and setting the least significant carry-in bit to one, thereby computing

A + B + 1 or twos complement subtraction.

6.2 Forward and Reverse Bitslices

A simple design for a conventional ALU is shown in Figure 6-3. The input operands fan-out

to the various functional units, and the outputs from each unit are multiplexed to the ALU

output. Each functional unit performs a computation and all but one result is "thrown

away." This is clearly not feasible for a reversible processor.

Shifter

Figure 6-3: A conventional ALU design.

The Pendulum processor does have a similar structure, with multiple functional units.

However, the shared input bus and shared output bus connects to these units through tri-

state gates, as designed in Section 4.4. At most one path through the bitslice is ever selected

at a time. The input operands are steered through one functional unit and all the other
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units are disconnected from the shared busses. When the ALU is idle, all of the tri-state

paths are in the high-impedance state.

Conventional ALU's generally take two operand inputs and generate one output value. A re-

versible ALU must output enough information to reconstruct the inputs, including possibly

passing the operands through the ALU unchanged. The Pendulum ALU passes expanding

operations' input(s) through to the output. Two-operand non-expanding operations gener-

ate a result and one of the operands. One-operand non-expanding operations, rotate left

and right, only generate a result. Recall from Section 4.2.1 that expanding operations, such

as NAND have more outputs than inputs, while non-expanding operations, such as modulo

addition, have the same number of inputs as outputs.

The most striking aspect of a reversible ALU is the "unadd" path which "uncomputes" the

carries generated by each bitslice. The details of reversible addition are in Section 6.2.5

below.

The Pendulum bitslice schematic is shown in Figure 6-4. The following sections address the

four 'components of the bitslice from simplest to most complex.

fphi..fphi,fPf.JPrphi,.rphi,rP,.rP

Ain,Xiri <0 btAot AoutA7uT

pAp8,ApB C> PA._P -PAOIPAO <D pA.OB0pAOp8O

AouIAoEI

BizrKQ Z.B out.zout U
ad~eiNo d~a 3ddE ndn addadd~ndut addEn~ut,addtn~uT

X rEn.cd o x rddiiir xo ,o~Outxo- nut oM ~ txrnu o~~txrn

Figure 6-4: The Pendulum ALU bitslice schematic. The inverters at the top are operand
feedthroughs. The three other blocks perform the XOR, ANDX, ORx, and addition operations.
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6.2.1 Operand Feedthroughs

Two tri-state full inverters at the top of Figure 6-4 pass the A and B operands through the

bitslice. The pA and pB signals, which enable the inverters, stand for "pass A" and "pass

B." They are asserted based on which operation is being performed. For example, and is

a two-operand expanding operation and passes both A and B through the ALU. The xor

operation is a two-operand non-expanding operation and only passes B through the ALU;

the A operand is unambiguously determined by the output value Z and operand B.

The non-tri-state inverter passes the pA and pA control signals through the bitslice. The

pB and pB signals are, because of a style error by the designer, passed through the ALU at

a higher level of the hierarchy.

The operand feedthroughs inside the bitslice are different from the operand feedthroughs

external to the bitslice, known as The Wedge. The internal feedthroughs pass only the one

bit of each operand being used for computation in that particular bitslice. The Wedge is

a feedthrough for all the other bits in the operands and results. The Wedge is large and,

although composed entirely of wires and tri-state inverters, complex relative to the bitslice.

It is covered in Section 6.3.

6.2.2 XOR

XoR is a non-expanding operation. The two inputs Ain and Bin fully determine and are

fully determined by the two outputs Zout and Bout. Figure 6-5 shows the tri-state dual-rail

XOR gate and a full inverter for the enable signals. The XOR gate is made up of tri-state

versions of Figures 4-16 and 4-16 (b). Note that the Bout signals are actually reverse inputs

to the XOR gate. The Bout operand is passed through the bitslice one level up the hierarchy,

in Figure 6-4. Rather than have each block in the bitslice pass its operands individually,

replicating the tri-state inverters in each block, the operand feedthrough path is shared by

all three blocks. The savings of two sets of four tri-state inverters comes at the cost of the

pA and pB control signals; a worthwhile trade. The note "B not rec" on the xon symbol

indicates to the designer that the Bin and Bin signals are not restored to Vdd/ 2 by the
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XOR gate used here. Unlike an SCRL full-gate, all inputs are not restored to Vdd/ 2 . Unlike

an SCRL half-gate, one of the inputs is restored to Vdd/ 2 . The XOR gate in Figure 6-5 is a

sort of "three-quarters" SCRL gate.

fphi.fphi,fP,_fP,rphi,_rphi,rP,_rP

xorEn x En, - xorEn out nut xorEnOut,xorEnput

Ain,Xi Ain Ain raI Zout Zout ZoutZo-UT

nin i Zoui t sou_

Bi,-n Bn BnBout Bout Bout'Bout
Bin ot rec gout5 Bout

nor ~n ofin sel s 389 rseljrsiI xorEnOut,xo n ut

Figure 6-5: The Pendulum ALU XOR bitslice.

The XOR block restores the A inputs to Vdd/ 2 and drives the Z outputs. The B inputs are

restored by the tri-state inverters. This is a very simple block.

6.2.3 ANDX and ORX

Computing ANDX and ORX is slightly more complex. Since logical AND and OR are expanding

operations, the block must have three outputs. To simplify interactions with the rest of the

Pendulum datapath, the ALU executes the three-operand functions ANDX and ORX. The

ANDX function is defined as Z+ = (A - B) e Z. Similarly, ORX is Z+ = (A + B) @ Z. Each

bitslice is constructed using only one level of logic, i.e., one pipeline stage. Therefore, the

ANDX and oRx blocks must satisfy the truth table in Table 6.1.

Table 6.1: ANDx and ORX truth tables.
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in out
A B Z A B Z+=(A-B)e9Z Z+=(A+B)GeZ
0 0 0 0 0 0 0
0 0 1 0 0 1 1
0 1 0 0 1 0 1
0 1 1 0 1 1 0
1 0 0 1 0 0 1
1 0 1 1 0 1 0
1 1 0 1 1 1 1
1 1 1 1 1 0 0



The schematic for a tri-state half-ANDX gate is shown in Figure 6-6. Four of these gates

are required for a dual-rail full ANDX gate: one forward gate for each polarity of the output

Zout (Z+ above) and one reverse gate for each polarity of Zin (Z above). The A and B

operands are passed through the tri-state inverters one level up the hierarchy. Likewise,

four tri-state half-oRX gates are required to generate the Zout values and restore the Zin

signals to Vdd/ 2 .

Figure 6-6: An SCRL half-ANDX gate.

The enable signals for these two tri-state

As with the XoR gate, the Aout and Bout

to the ANDX and ORX gates.

gates are passed through a pair of full-inverters.

signals needed to restore Zin to Vdd/ 2 are inputs

The moderate complexity of these gates relative to the simple XOR arises from the more

complex logic function described in Table 6.1. The basic operation of this gate is otherwise

very similar to the XOR gate.

6.2.4 Addition

Modulo addition is a non-expanding operation; given two operands A and B, the sum

Z = A + B and B are sufficient to exactly determine A. The truth table for modulo
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addition of two two-bit numbers is shown in Table 6.2. Note that the sixteen distinct input

combinations produce sixteen distinct output combinations.

Table 6.2: Two-bit summand modulo addition truth table.

However, a full adder

shown in Table 6.3.

performs an expanding operation. The truth table for a full adder is

The carry-sum pairs of bits 01 and 10 can each be generated with three different input

combinations. Two other bits are required to distinguish between these three possible

input combinations, for a total of four output bits. The full adder has only three input bits,

so it is an expanding operation.

The difficulty with computing multiple-bit addition is that addition is not a bit-parallel

operation; adding two N bit numbers requires a large function of 2N inputs. The difficulties

of computing carry lookahead values for large N are well known [PH90]. As will be seen

in the next section, however, a bit-serial reversible ripple carry adder incurs substantial

overhead from operand distribution. Use of conventional fast adder techniques to minimize

the logic required by a reversible adder is still an open research question.

The current discussion is restricted to performing modulo addition using an expanding
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in out
A 1  A0  B 1  Bo Bout1  Bouto S1  So

0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 0 1 1 1 1 1 1
0 1 0 0 0 0 0 1
0 1 0 1 0 1 1 0
0 1 1 0 1 0 1 1
0 1 1 1 1 1 0 0
1 0 0 0 0 0 1 0
1 0 0 1 0 1 1 1
1 0 1 0 1 0 0 0
1 0 1 1 1 1 0 1
1 1 0 0 0 0 1 1
1 1 0 1 0 1 0 0
1 1 1 0 1 0 0 1
1 1 1 1 1 1 1 0



Table 6.3: Full adder truth table.

ripple carry block. The block takes dual-rail pair inputs of A, B, and Cin. The dual-rail

sum, labeled Zout and Zout in Figure 6-7, and carry out signals are generated from the

three dual-rail inputs. The carry in signal can be computed from the A and B operand

values and the sum according to the equation

Cin = Cout - (B + A + Zout) + A-B-Zout (6.1)

The reversible ripple carry full adder computes the output values from Table 6.3; the two

operands A and B are passed through the block using tri-state inverters. The inverters

restore the input values of A and B to Vdd/2. A circuit implementing the equation above

restores Cin to Vdd/ 2 . The sum bits computed at each stage of the ripple carry chain are

passed through tri-state inverters for retiming.

6.2.5 Un-Addition

Note that at the end of the chain, the values of A, B and Cout are retained, as well as the

desired sum. Rather than performing the desired mapping of (A, B) ++ (S, B) where S is the

modulo sum, the adder has so far computed (A, B) -+ (Cout, S, A, B). The intermediate,

"garbage," values of Cout and A must now be "uncomputed." A second ripple adder chain

uncomputes the carry out and A values using the sum, B, and Cout. This is the opposite

of using A, B, and Cin to compute the sum and Cout. The ALU therefore computes
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in out
A B Cin A B Cout S=A+B
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 1 0 1
0 1 1 0 1 1 0
1 0 0 1 0 0 1
1 0 1 1 0 1 0
1 1 0 1 1 1 0
1 1 1 1 1 1 1



Figure 6-7: The Pendulum ALU ripple carry add slice.
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(A, B) ++ (Cout, S, A, B) ++ (S, B). The truth table for the uncomputation is shown in

Table 6.4.

Table 6.4: Reverse adder chain truth table.

Note that addition is the only operation that requires an uncompute path. No intermediate

values are computed during andx, orx or xor, so no uncomputation is necessary. The

unaddition bitslice path has two parts: an unadd block to restore the A and Cout signals,

and a set of inverters to delay the other operations' results appropriately.

In the uncomputation table, not all combinations of A, B, Cout, and S are listed. Because

Cout and S are themselves functions of A and B, the cases for which A and Cin must

be restored are limited. Specifically, the four input signals have only eight valid input

combinations. Three output signals are therefore sufficient to uniquely determine each

input combination. This is an unexpanding operation similar to the un-NAND operation

from Section 4.2.2: a sparse, decoded representation is compressed into a more compact

encoding.

The unadd computation may only proceed after the forward add has completed. Normal

ripple carry add proceeds from the least significant bits to the most significant bits, gen-

erating and propagating carries from the the LSB to the MSB. The final carry out from

the MSB is the first carry out to be uncomputed by the unadd chain. Uncomputation then

proceeds back towards the LSB. By the time the unadd chain has uncomputed all the carry

out values and the A values, the only signals left are B, the sum, and the original carry

in. For addition, this carry is a zero; for subtraction, it is a one. Constants are trivially
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in out
A B Cout S B S Cin
0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 1 0 1 1 1 0
0 1 1 0 1 0 1
1 0 0 1 0 1 0
1 0 1 0 0 0 1
1 1 1 0 1 0 0
1 1 1 1 11 1



uncomputed.

As is common in reversible systems, a computation produces some set of intermediate

values on the way to computing the desired final result. The intermediate values are then

uncomputed, leaving only the result.

During both the forward computation and reverse uncomputation, the multi-bit A, B, and

S values are passed through the system. Each stage of the ripple carry add and unadd must

have the proper bit signals input at the proper time. A delay chain for the operands and

results must be constructed to feed the bitslices operand values and remove result values.

The next section details this procedure.

6.3 The Wedge: Operand Distribution

In terms of silicon area, wire count, and transistor count, the operand distribution network

is by far the largest component of the ALU. From a schematic point of view, it is just a

tedious set of full inverters.

Figure 6-8 shows the first two bitslices of the ALU and the delay elements for the operands

and results. At the start of the ALU, when the bitslice is computing the LSB sum of Aino

and Bino, the other N - 1 bits of Ain and Bin are passed through a delay element, in this

case a pair of inverters for each bit, one for each polarity. Recall that all signals going into

the ALU bitslice are dual-rail. The first bitslice executes the expanding full adder operation,

driving the sum bit on the output line Zmido and carry Couto as well as passing the Aino

and Bino values through to the output, where they are renamed Amido and Bmido. These

output values are inputs to the lower set of delay elements. The next bitslice takes in Aini

and Bini from the upper delay elements and produces Zmidi and Couti, passing Amid1

and Bmidi through.

Each bitslice occupies a single time slice. SCRL timing constraints require that signals pass

from one time slice to another through a logic gate. The inverters feeding the operand and

result signals through the ALU serve to control the information flow from one time slice
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Figure 6-8: The first two bitslices from the Pendulum ALU.

to the next. It is useful to label each time slice with a different letter. The wires contain

signals such as AiA and S8B. As with a conventional vector, the number represents the

bit's position in the vector. The subscript letter labels the vector's temporal position in

the block. A bitslice module may add AIB and BiB to produce Cout1 c and Sic. The

CAD tool used to produce Figure 6-8 denotes vectors using an angle-bracket notation, so

signals in a time slice are labeled as AinA<0>, ZinB<1:11>, and so on. The labels Ain

and Zin denote the signal name, the suffix A or B is the time slice, and the trailing <0> or

<1:11> is the set of bits from the vector that are part of the labeled net. For example, as

the signals AinA<1:11> and AinA<1:11> pass through a set of twenty-two inverters, the

output is labeled as _AinB<1:11> and AinB<1:11>. The leading underscore is due to a

limitation of the CAD tool and is equivalent to an overbar.

The operands entering the ALU are Ain, Bin, and Zin. The Zin operand is used in expanding

operations such as andx and slix, which perform Zmid = (Ain - Bin) E Zin and Znid =

(Ain < 1) e Zin, respectively. The outputs of the bitslices are Amid, Bmid, and Zmid.

The "mid" denotes their position as the middle results of the ALU. The input values are

obviously labeled "in," the outputs are labeled "out." The middle values are those that are

produced by the forward carry chain and are used as inputs to the unadd chain.
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The reason the operand distribution inverters are known as The Wedge' is that as the

operands are used by the bitslices, fewer and fewer delay elements are needed for the input

operands, and more and more delay elements are needed for the middle operands. The

operand LSB's are used in the first bitslice, so 3 * (N - 1) full inverter pairs are needed for

the set of dual-rail input operand values. The second bitslice uses bit 1 of each operand,

so 3 * (N - 2) inverter pairs are in the upper delay chain. Meanwhile, the first bitslice has

produced a result bit and passed the operands through. So the lower delay chain requires

three inverter pairs. As the computation progresses, the number of delay elements above

the bitslice is decreasing while those below are increasing. Each time slice has a total of N

delay gates.

When the computation reaches the unadd chain, the Amid operand values are being un-

computed at each unadd bitslice. The net number of delay elements is therefore decreasing.

The middle values are passed through the bitslice and become the output values. The first

two unadd bitslices are shown in Figure 6-9.

Z.idk4<1> 0 10:0>.ZmidN<10:0> _ Erdn :0.nd > dO<3A85- zmido Ia s
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Figure 6-9: The first two bitslices from the unadd ripple carry add chain of the Pendulum

ALU.

In layout, the forward addition upper wedge and lower wedge fit together to make a square

array. The Wedges for each operand may be stacked on top of each other and the operand

values and bitslice outputs fed up and down to and from the Wedges through wiring channels

'The term was coined by Athas and Svensson in 1994 [AS94].
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between each bitslice and delay element. The uncomputed Amid values form a decreasing

wedge and do not have a complementary increasing wedge. Figure 6-10 shows a block

diagram of the increasing and decreasing wedges for the A, B, and Z operands.

;in
Zin<1:N>- -Zout<O:N-1>

- ZoutI

4in

Ain<1:N>- -Aout<O:N-1>
Aout I

in

Bin<l:N>- IBout<O:N-l>
Bout

Ain<O>, Aout<N>,
Bin<O> 0 1 --........... : N Bout<N>,
Zin<0> | | Zout<N>

Bitslices

Figure 6-10: Block diagram of The Wedge layout. N - 1 bits of three operands enter on

the left side and N - 1 bits of two operands and the result exit on the right side. Single

bits of each operand are sent down to the bitslices at the bottom, and the output bits of
each bitslice are sent up to the output wedge. The 0 th and NIh bits of the input and output

vectors enter and leave the bitslice directly. The silicon area consumed by each block is in

similar scale to this diagram.

For all operations other than add, the unadd section of the ALU is disabled and the operands

and results are simply fed through for retiming. Since expanding operations need to output

the Ain operand unchanged, an extra feedthrough path for the Ain operand is needed. This

path is separate from the Amid unadd wedge of Figure 6-10.

The Wedges consume a substantial fraction of the ALU chip area. The wires running up

and down between the Wedges and the bitslices are long, on the order of 1 mm in the
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Pendulum chip's 0.5 pm technology. Wire engineering and transistor sizing efforts are well

spent here. Also, conventional CAD tools are ill-equipped for schematic design of such a

structure. The Pendulum ALU schematic is a Byzantine construction with hundreds of

wires, dozens of symbols, and thirty-two time slices. Some of the complexity is due to

designer error, but much of the complexity is due to CAD tool constraints. However, even

with all its complexity, the Pendulum ALU is still a highly regular structure, easily verifiable

by automated simulation and verification tools.

Adding to the complexity of operand distribution is the integration of the shifter inputs

and outputs with the bitsliced operations. The next section covers shifter design and how

it fits in with the other ALU operations.

6.4 Shifter

The Pendulum shifter performs left and right logical shifts, right arithmetic shift, and left

and right rotate. All shifts and rotates are by one bit position. The shift operations are

followed by xoa, e.g., producing Z+ = (A > 1) e Z. Rotates do not perform xoR. Shift

operations take two operands while rotates are single operand operations. The shift and

rotate operations require four time slices. The first logic stage conditionally computes the

dual rail versions of the operands to be used, either Ain or Ain and Zin. Recall that rotates

are one operand instructions while shifts perform a shift followed by a two operand XOR. A

control signal is also computed in the first stage.

The second logic stage actually performs the shift or rotate. Figure 6-11 is the entire shifter

schematic. The inputs to the XOR gates and the tri-state inverters are shifted or rotated

appropriately. The control signals enable at most one of the five possible paths through the

shifter.
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Figure 6-11: The Pendulum shifter schematic.

6.4.1 Rotation

Performing the actual single-bit rotate is very simple. Essentially the input operand wires

are switched around and passed through a logic stage. Figure 6-12 shows how the rotates are

performed. When the appropriate control signal enables one of the two tri-state inverters,

the output value is rotated relative to the input bus ordering.

A< 11:0>
AinA<10:0>,AinA<11> ro . ZoutB<11:0>

rIA.ii F1T rsei,-sei rlB,rI9

B<11:0>
AinA<0>,AinA<11:1> rai. ZoutB<11:0>

rrATrA - rse rse-Il rrB, TE

Figure 6-12: The two tri-state inverters that actually perform the rotation in the Pendulum
shifter.

The difficulty associated with performing the rotate operations is that rotate is not its own

inverse. The processor must know what direction it is running in to know whether to rotate
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left or right. This complicates the control logic. If the processor is running forward, the

rotate left opcode means the shifter should perform a left rotate. If the processor is running

in reverse, a rotate left instruction means the shifter should perform an "un-left rotate,"

or a right rotate. The Pendulum datapath is so symmetric that very few blocks perform

different operations based on the processor direction. The two exceptions in the ALU are

rotates and addition. Just as one direction of rotate is not its own inverse, addition is not

its own inverse, so the adder must know if it should perform add or "unadd," i.e., subtract.

Figure 6-13 is the logic gate that generates the rotate left control signal. The rotate left and

rotate right opcodes differ only in their LSBs, so the output is asserted when the processor

direction bit is low, indicating forward operation, and the opcode is rotate left, or when the

dirction bit is high and the opcode is rotate right.

i

AiOp<> 41

Figure 6-13: Left-rotation (lr) generation logic. Note that the lr signal depends on the

processor direction.

This lesson is worth restating: an operation that is its own inverse may be controlled and

implemented without using the direction bit. A reversible processor must contain some

representation of its direction, but making as many operations as possible be their own

inverses will reduce the use of that representation and simplify control signal generation

and operand decoding. Using operations that are their own inverses may complicate those

operations, such as using ANDx rather than AND, but that complexity is generally offset by

the simplified control.
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6.4.2 Shifts

By performing shifts followed by XOR, the expanding shift operations are their own inverses.

Actual implementation of the shift operation is very similar to the rotation, save that instead

of an inverter, the inputs to an xon gate are wired to perform the single bit shift. Since

shift is an expanding operation, the operand must be retained and used to restore one of the

XOR gate's inputs. The shifter supports logical and arithmetic shifts by including support

for generating a constant zero or for replicating the sign bit for the MSB to be xoRed with

the Zin value.

The paths through the rotate logic, shiftx logic, and delay elements, are all constructed of

tri-state gates. Only the path for the operation performed is active at any time.
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Chapter 7

SCRL Scorecard

This chapter summarizes the "take-home" messages of Part II. At the end of their first

chapter, Weste and Eshraghian summarize the characteristics of CMOs circuits relative to

other integrated circuit technologies, such as GaAs and bipolar devices. Again following

their lead, the bulleted list below describes the main features of SCRL and compares SCRL

to conventional CMOS.

" Fully restored logic levels; i.e., output settles at Vdd or ground.

" Transition times-the rise and fall times of a gate are set by the external power clock

ramp slope. The system's energy dissipation is directly tied to the transition time.

" Memories are implemented with very low density relative to standard CMOS. A static

RAM cell requires 25 times as many devices as a conventional 6-T SRAMcell.

" Transmission gates are used exclusively at the output of logic gates. They are not used

on their own to perform computations.

" Power dissipation-Asymptotically zero dissipation. While standard CMOS, or any irre-

versible logic family, must dissipate a minimum quantity of energy for every bit erased, as

well as dissipation due to "frictional" losses, SCRL circuits have no theoretical minimum

dissipation and only incur frictional energy losses.

* Precharging characteristics-Node charging and discharging happens quasistatically, con-

trolled by the external power clocks.
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" Power supply-DC power and ground supplies are needed for well and substrate taps.

Twenty to thirty additional external, AC power clocks control the flow of energy into and

out of the circuit. Design of an efficient, energy-recovering power supply is an unsolved

problem. This is a substantial stumbling block in the use of reversible systems.

" Packing density-Requires at least 2n + 2 devices for n input gates. Requires 2n + 8

devices for tri-state gates. Also requires routing of eight power clocks and the two DC

supplies to each gate. For gates of even low complexity, the chip area required for

supplies is comparable to or smaller than the area required for transistors and local

interconnect. As in conventional circuit design, clock, supply, and block-to-block signal

routing consume the bulk of the chip area.

" Layout-Standard cell-style layout is possible using SCRL gates. The area penalty for

SCRL vs. conventional CMOS circuits for a large system is approximately an order of

magnitude.

The primary reason a designer would choose SCRL over standard CMoS is the asymptotically

zero power dissipation of reversible circuits. As silicon technology continues to improve, the

area penalty of reversible circuits, already less than about an order of magnitude, becomes

less significant. The applications and motivations for low power/low energy computing en-

gines are well known, and in certain contexts, the additional cost of silicon area may be

negligible relative to other system costs. Also, just as solid state devices replaced vacuum

tubes and high-performance CMOS circuits replaced bipolar devices, "slower" reversible cir-

cuits may eventually be faster than their irreversible counterparts because their lower energy

dissipation allows them to be packed more densely without overheating the system [Fra99].
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Part III

The Pendulum Reversible

Processor
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Chapter 8

Reversible Computer Architecture

This chapter discusses the engineering challenges of architecting a fully reversible processor,

specifically the lessons learned in developing and implementing the Pendulum processor

instruction set, detailed in Appendix A. As implemented in SCRL, the Pendulum processor

contains approximately 200,000 transistors. It was fabricated in a 0.5 pm CMOS process.

The chip has 180 pins, of which 30 are used for the swinging scRL power clocks and two

are for DC Vdd and ground. Including the pads, the chip is approximately 6 mm by 8 mm.

After the instruction set had been designed, schematic design, simulation, and chip layout

required approximately two person-years. No automated layout generation or place and

route software was used, although the regularity of SCRL gates suggests that place and

route tools would be useful in the layout of future chips.

8.1 Why Design a Reversible Architecture

A fully reversible processor must implement a reversible instruction set in a reversible

circuit implementation. A reversible instruction set is one in which both the previous and

next instructions are known for each instruction in a correctly written reversible assembly

language program. The processor may have varying degrees of protection guaranteeing

reversible operation in the face of incorrectly written code, as discusssed in Section 8.5. The
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dynamic instruction stream of a reversible processor may be executed both forwards and

backwards. The instruction set described here is a modification [Fra97] of the one designed

in Vieri's master's thesis [Vie95]. A detailed trace of a sample program, a Fibonacci number

calculating routine, written in the Pendulum Assembly Language (PAL) is in Chapter 9.

Adiabatic operation requires that the circuits perform logically reversible operations. If one

attempts to implement a conventional instruction set in a reversible logic family, reversibility

will be broken at the circuit level when the instruction set specifies an irreversible operation.

This break in reversibility translates to a required energy dissipation. To ensure reversibility

at the circuit level, the instruction set must always be performing reversible operations.

8.2 The Pendulum Instruction Set

The Pendulum processor was originally inspired by the elegantly simple MIPS RISC archi-

tecture [KH92]. The register-to-register operations, fixed instruction length, and simple

memory access instructions make it a good starting point for a radically different approach

to instruction set design. Reversibility makes Pendulum novel enough; a more unusual

architecture is covered in Chapter 10.

For ease of implementation, and of course to maintain reversibility, the instruction set

has been substantially modified. It retains the general purpose register structure, fixed

length instructions, and spartan instruction set principles. The instruction set includes

conventional register to register operations such as addition and logical AND, shift and

rotate operations, operations on immediate values such as add immediate and OR immediate,

conditional branches such as branch on equal to zero and branch on less than zero, and a

single memory access operation, exchange. The direction of the processor is changed using

conditional branch-and-change-direction instructions.

The Pendulum datapath was developed in conjunction with the instruction set, first as a

set of Verilog HDL modules which were eventually designed at the transistor level. The

Verilog simulations allowed flexibility to experiment with changes in the instruction set. As

the datapath modules were implemented at lower levels, nailing down the exact instruction
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encoding was necessary, as were minor modifications to the instructions supported by the

datapath.

8.2.1 Register to Register Operations

Conventional general purpose register processors read two operands, stored in two possibly

but not necessarily different registers, and perform some operation to produce a result.

The result may be stored either in the location of one of the operands, overwriting that

operand, or some other location, overwriting whatever value was previously stored there.

This produces two difficulties for a reversible processor. First, writing a result over a

previously stored value is irreversible since the information stored there is lost. Second,

mapping from the information space of two operands to the space of two operands and

a result will quickly fill the available memory if values are not allowed to be overwritten.

However, if the result is stored in the location originally used for one of the operands, the

computation takes two operands as input and outputs one operand and a result. This space

optimization is not required for reversibility if the processor can always store the result

without overwriting some other value, but it is a useful convention for managing resources.

An astutely designed instruction set will inherently avoid producing "garbage" information

while retaining as much flexibility and power for the programmer. This leads to the dis-

tinction between expanding and non-expanding operations. Both types of instruction are

reversible; the distinction is made only in how much memory these instructions consume

when executed.

All non-expanding two operand instructions in the Pendulum instruction set take the form:

Rsd <- F(Rsd, Rs) (8.1)

where Rea is the source of one operand and the destination for the result, and R. is the

source of the second operand.

By contrast, logical AND is not reversible if only the result and one operand are retained.

Except for the special case of the saved operand having every bit position set to one, the
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second operand can not be recovered accurately and must be stored separately. Since

operations like AND, including logical OR and shift operations require additional memory

space after execution, they are termed expanding operations. The problem then arises of

how store that extra information. If the two operands continue to be stored in their original

location, the result must be stored in a new location. It is still not permissible for the result

to overwrite a previously stored value, so the result may either be stored in a location that

is known to be clear or combined with the previously stored value in a reversible way. The

logical XOR operation is reversible, so the Pendulum processor stores the result by combining

it in a logical XOR with the value stored in the destination register, forming ANDX, ORX and

so on. Logical ANDX and all other expanding two operand instructions take the form:

Rd +- F(Rs, Rt) E P (8.2)

where R, and Rt are the two operand registers, Rd is the destination register, and P is the

value originally stored in Rd. Note that if P = 0 then Rd +- F(R 8 , Rt).

Constructing a datapath capable of executing an instruction stream forwards and backwards

is simplified if instructions perform the same operation in both directions. Addition, which

appears simple, is complicated by the fact that the ALU performs addition when executing

in one direction and subtraction when reversing. The expanding operations are their own

inverses, since

P = F(Rs, R) G Rd (8.3)

Non-expanding operations could take the same form as the expanding operations, perform-

ing addx and so on, simplifying the ALU, but programming then becomes fairly difficult.

Only expanding operations, which require additional storage space, are implemented to

consume that space.

Converting a conventional register to register instruction execution scheme to reversible

operation is relatively simple. The restriction on which registers can be operands is a minor

inconvenience for the programmer.
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8.2.2 Memory Access

Chapter 5 covers the issues in designing reversible memory. The challenge of adapting

the XRAM memory architecture involved its conversion from a single-ported memory to a

triple-ported register file. The solution chosen was to time-multiplex access to the memory.

Each operation may read up to three different operands from the memory. Instructions are

required not to read any register file location more than once, i.e., the N operands used by

an instruction must be read from N distinct register file locations. The register file performs

exchange operations, but since the processor reads values from the register file, performs

some operation on those values, and writes values back to the register file, the exchange

operation must be split into two temporally distinct parts.

When the operands for an instruction are read, an exchange is performed, but the value

inserted in the register file locations is a constant zero. When the new values are written

at the end of the instruction execution, the constant zeros are moved out of the register file

and sent to a zero sink.

The multiple reads and writes to the register file that occur during instruction execution

happen sequentially. If an instruction reads three operands, A, B, and Z, the enable and

address values for A are sent to the register file inputs while the enable and address values

for B and Z are sent through one and two levels of delay elements, respectively. When the

A value has been read, the control signals for B arrive at the register file inputs. The A

output value is delayed. When the B output value has been read, the Z control signals

arrive at the register file inputs, the A output value is again delayed, and the B output

value is delayed. When the Z output value is read, all three output values, A, B, and Z, are

sent on to the next section of the datapath. During each read, a constant zero is inserted

into each register file location.

After the instruction execution stage has completed, the write operations happen similarly

to the read operations. Each operand is written, pushing out the constant zeros stored

during the read, one at a time while the other values are delayed. The address and control

signals are appropriately delayed so as to exit the register file simultaneously.
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The delay modules and wiring for the register file consume more silicon area than the

memory array itself.

8.2.3 Control Flow Operations

Conditional branches are crucial to creating useful programs. The processor must be able to

follow arbitrary loops, subroutine calls, and recursion during forward and reverse operation.

A great deal of information is lost in conventional processors during branches, and adding

structures to retain this information is very difficult.

Any instruction in a conventional machine implicitly or explicitly designates the next in-

struction in the program. Branch instructions specify if a branch is to be taken, and if so,

what the target is. Non-branch instructions implicitly specify the instruction at the next

instruction memory address location. To follow a series of sequential instructions backwards

is trivial; merely decrement the program counter rather than incrementing it. Following a

series of arbitrary jumps and branches backwards in a traditional processor is impossible:

the information necessary to follow a jump or branch backwards is lost when the branch

is taken. A reversible computer must store enough information, either explicitly in the

instruction stream or elsewhere, to retrace program execution backwards.

The literature contains a number of techniques for performing jumps and branches reversibly

that differ from the scheme presented here [Fra97, Vie95, Ha194]. The discussion below refers

only to the particular scheme used in the Pendulum processor.

Pendulum branch instructions specify the condition to be evaluated, either equal to zero or

less than zero, the register containing the value to be evaluated, and a register containing

the target address. The instruction at the target address must be able to point back to

the branch address and know if the branch was taken or if the target location was reached

through sequential operation. For proper operation, each branch instruction must target

an identical copy of itself.

When a branch condition is true, an internal branch bit is toggled. If the branch bit is

initially false and the branch condition is true, the program counter update (PCU) unit
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exchanges the value of the program counter and the target address, and then the branch bit

is toggled. The target address must hold an identical branch instruction which toggles the

branch bit back to zero, and sequential operation resumes. The address of the first branch

instruction is stored in the register file so that during reverse operation the branch can be

executed properly in reverse.

8.3 Instruction Fetch and Decode

Reading from the instruction memory has the same constraints as reading from the data

memory or register file. Each copy created when an instruction is read must be "uncopied."

If instruction fetch operations are performed by moving instructions rather than copying

them, they must be returned to the instruction memory when the instruction has finished

executing.

After the instruction is read (or moved) from the instruction memory, the opcode is decoded

and a number of datapath control signals are generated. Just before the instruction is moved

back to the instruction memory, these control signals must be "ungenerated" by encoding

the instruction.

A certain symmetry is therefore enforced with respect to instruction fetch and decode.

An instruction is moved from the instruction memory to the instruction decode unit. The

resulting datapath control signals direct operation of the execution and memory access units.

After execution, the control signals are used to restore the original instruction encoding,

and the instruction may then be returned to the instruction memory.

The processor must be able to return the instruction to its original location, so its address

must be passed through the datapath and made available at the end of instruction execution.

Since the address of the next instruction must also be available at the end of instruction

execution, the Pendulum processor has two instruction address paths. One path contains

the address of the instruction being executed, and the program counter update unit uses it

to compute the address of the next instruction. The second path contains the address of the

previous instruction and the PCU uses it to compute the address of the current instruction.
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The output of the PCU is then the next instruction address and the current instruction

address, which are the values required to return the current instruction to the instruction

memory and read out the next instruction.

The processor has two bits to keep track of what type of control flow operations are being

performed, a "branch" bit and a "flip" bit. The branch bit indicates if the processor

is in the middle of a branch, i.e., if a branch conditional evaluated to true. The flip

bit is also asserted if the branch conditional of a direction changing branch instruction

evaluates to true. The two tables below indicate the action the PCU takes to update the

two program counter values for both direction changing branch instructions and other types

of instructions. Remember that during branches, the PC value is exchanged with a register

file value, denoted rb in the tables below; rb' is the value written back to the register file

during a branch instruction. Br is the branch bit state when instruction execution begins.

Sel is the evaluation of the branch conditional. The PC' column indicates how the previous

PC value (PPC) is updated to become the current PC, and the NextPC column indicates

how the current PC value is updated to compute the address of the next instruction. The

previous PC and PC are incremented by the value d, representing the direction bit. If the

processor is running forward, d = 1; if reverse, d = -1.

Table 8.1: Current PC and Previous PC update behavior for non-direction-changing in-
structions.

Performing these computations during branching instructions is very difficult, especially

when the processor is changing direction. Traditional processors throw away every instruc-

tion executed, and ensuring that the instructions are returned to the instruction memory

is difficult.
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Br Sel Br' PC' NextPC rb'
0 0 0 PPC+d PC+d rb

0 1 1 PPC+d rb PC
1 0 disallowed
1 1 0 rb PC+d rb



Table 8.2: Current PC and Previous
instructions.

PC update behavior for direction-changing branch

8.4 Distributed Instruction Encoding and Decoding

The Pendulum processor uses a technique

instruction into control signals. Because

of "just in time" decoding and encoding of the

of the high cost of passing signals through the

datapath delay elements, reversible logic encourages the designer to pass as compact a

representation of the control signals as possible through the datapath. The compact rep-

resentation should only be decoded at the last possible moment, expanding the encoded

signals into the desired set of decoded signals. After the control signals have done their

duty, the complementary unexpansion should be performed.

The Pendulum processor has an explicit instruction decoder and encoder, but these blocks

perform only a fraction of the signal decoding and encoding in the processor. The ALU

contains a number of purpose-build encoding and decoding blocks, as does the program

counter update unit and the register file. One block, primarily used to delay control signals

while the register file reads are occurring, also performs a substantial amount of control

signal encoding and decoding. This encoding and decoding breakdown reduces the number

of wires needed to distribute the control signals but increases the number of special logic

blocks required.
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Br Sel Flip Br' Flip' d' PC' NextPC rb'
0 0 0 0 0 d PPC+d PC+d rb
0 0 1 disallowed
0 1 0 1 1 d PPC+ d rb PC
0 1 1 disallowed
1 0 0 disallowed
1 0 1 disallowed
1 1 0 0 0 d rb PC+d rb
1 1 1 0 0 d rb PC+d rb



8.5 Reversibility Protection in Hardware

The balance between hardware control and software control of various aspects of the re-

versible processor is frequently problematic. Early designs using a hardware-controlled

garbage stack were found to be inefficient and abandoned for more programmer-accessible

garbage management. Likewise, the instruction set itself may be simple, flexible, and re-

versible only if programs are carefully constructed. Or, the hardware may incorporate some

level of protection for reversibility. For example, any instruction set that requires branch

instructions to be paired with programmer-inserted reverse branch instructions is suscepti-

ble to broken reversibility if the reverse branch is left out or incorrect. Also, storing values

in the register file may be irreversible unless either the programmer is careful to only store

to clear locations or "stores" are actually an XOR of the previously stored value and the

new value.

If conditionally expanding instructions, such as overflow during addition, are supported, the

additional information may be difficult to handle in hardware, so guaranteeing reversibility

in the face of such exceptions may be left to software. While this may compromise the

overall reversibility of the processor, a design may not make any claims regarding guaranteed

reversibility for any program, only that a properly written program will be fully reversible.

8.6 Conclusion

All the primary blocks of a traditional RISC processor erase bits, and retaining those bits

presents varying levels of difficulty to the designer. Making control flow operations reversible

is difficult, and a reversible adder is surprisingly difficult. Distributing the control signal

encoding and decoding is a helpful design tool for simplifying datapath wiring. When

actually implementing a reversible instruction set, frequently the "devil is in the details."

Generating and sinking constants, matching pipeline delays, constructing shared busses,

and so on, require most of the designers effort.

These challenges present the opportunity to reexamine conventional RISC architecture in
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terms of bit erasure during operation. Register to register operations and memory access

are relatively easy to convert to reversibility, but control flow and, surprisingly, instruction

fetch and decode, are decidedly non-trivial. This knowledge may be used in traditional

processor design to target datapath blocks for energy dissipation reduction.
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Chapter 9

Detailed Code Trace

This chapter follows the execution of a small program written in Pendulum Assembly Lan-

guage, PAL. The program computes Fibonacci numbers using an iterative algorithm. The

program is compact enough that it does not need to store values in the external memory;

all operands fit in the eight local registers. The PAL code is shown below. The start and

f inish instructions are not implemented in the Pendulum processor but were useful for

simulation purposes.

main: start ; Compute Nth Fibonacci number

addi $1 1
addi $2 18
neg $2
addi $2 1
addi $3 bottom

addi $4 ti

addi $5 exit

call: bez $4 $7

rbez $5, $7

addi $5 -1

rexit: bez $4 $7

top: bltz $3 $2

ti: bez $4 $7

$0=0, $1=1, base case
hold N, loop counter

shorthand for (xori $2 Oxiff) + 1
setup $2 for loop count

loop target is top; swapped with bottom

entry point

exit address

call fib routine

return from rcall

paired loop branch, could be J
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addi $7 1
add $0 $1

xor $0 $1 ; swap $0, $1

xor $1 $0

xor $0 $1

addi $2 1 ; increment counter

addi $3 -10 ; correct for exchange

b1: bez $5 $2 ; exit condition

bottom: bltz $3 $2 ; loop until done

exit: bez $5 $2 ; exit point. top and bottom could

; have an unconditional jump

Copy output and call the fib generator in reverse.

add $6 $1 ; Result to $6

addi $4 3 ; $4 points to call, adjust to rexit

rcall: rbez $5 $2 ; call backwards; goto b1

bez $5 $7 ; return from rcall

reclaim other space

we know $0=0, $1=1, $2=-17, $3=bottom,

$4=tl, $5=call+1, $6=fib(18), $7=0

clear out those values

addi $1 -1

addi $2 17

addi $3 -22

addi $4 -13

addi $5 -9

end: finish

The algorithm overview is as follows. A few constants are set, including Fib (0) and Fib (1).

The inner loop is called unconditionally. The inner loop increments a loop counter, adds

Fib(i) and Fib(i-1), storing Fib(i+1) in the register previously containing Fib(i-1). The two

register locations are then swapped. Another loop counter is incremented, and the target

address for the top of the inner loop is calculated. This calculation is needed because of

the way Pendulum executes branch instructions and is explained in detail below. An exit

condition is tested, and if it fails, the PC jumps to the top of the loop. When the exit

contition is true, the program leaves the inner loop, and copies the result to an unused

register.

When exiting the loop, the program has computed Fib(N) but also contains the ending
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values of the loop counters and Fib(N-1). These unwanted intermediate values may now

be "cleaned up." The loop counter values are known at compile time, but Fib(N-1) must

be computed by calling the routine in reverse. After the uncomputation, the loop counters

and other constants are cleared.

The computation is set up between the instructions at main and call. All registers are

assumed to contain zero at the start of the program. Registers $0 and $1 are allocated to

Fib(i-1) and Fib(i), respectively. The base case for the iterative algorithm has Fib(0) = 0

in $0 and Fib(1) = 1 in $1. Register $2 contains N, the input to the program. In this case

it is hardcoded to be 18, since Fib(18) is the largest Fibonacci nubmer expressible in twelve

bits. It is negated with the neg instruction, which is actually an assembler macro for an

XOR immediate with all ones followed by add one, and serves as a loop counter. Register

$2 is incremented by one because the counter counts from -17 to 0, not -18 to 1. During

program execution, register $3 will alternately contain top and bottom; it is initially set to

bottom. Register $4 alternately contains call and the loop entry point, ti. Register $5 is

initialized to the loop exit address, exit. Register $7 is used as a reverse loop counter and

starts at zero.

The register allocation is:

* $0 Fib(N-1)

* $1 Fib(N)

* $2 forward loop counter

* $3 loop address register

* $4 loop entry address

* $5 loop exit address

* $6 result register

* $7 reverse loop counter

The instruction labeled call is a jump, since $7 contains zero at this point, and the program

jumps to the address specified in $4, ti. The PC value call is exchanged with the contents

of $4. At ti, the bez instruction toggles the processor branch bit back to zero. The reverse
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loop counter in $7 is incremented from zero to one. Registers $0 and $1 are added and stored

in $0, computing Fib(2). Registers $0 and $1 are swapped using three xon instructions, so

$0 contains Fib(l) and $1 contains Fib(2). The forward loop counter $2 is incremented by

one, from -17 to -16. Register $3, containing the address bottom, is corrected for the offset

between bottom and top, and now contains top. The version of the assembler used with

this code was not capable of taking an immediate value of the form bottom - top, so that

calculation was made by the programmer and included as a constant.

The exit condition at bi, bez $5 $2, evaluates to false, so the loop is called again by the

instruction at bottom. Register $3 and the PC exchange values, jumping to top and putting

bottom in $3. The paired conditional branch at top toggles the branch bit back to zero.

The entry condition at t1 is no longer true, and the loop executes again, incrementing

the reverse loop counter in $7, computing Fib(3) and exchanging the values of $0 and $1,

incrementing the forward loop counter $2, correcting the loop offset in $3, and testing the

exit and loop conditions again.

Registers $3, $4, and $5, are used for control flow and contain branch targets. Pendulum

processor control flow is discussed in Section 8.2.3. The values stored in these registers are

exchanged with the program counter when the branch condition evaluates to true. After

the exchange, the registers contain the "come-from" address.

Once Fib(18) has been computed, the forward loop counter in $2 has been incremented

from -18 to zero. The exit condition at bi evaluates to true, so the values of the PC and

$5 are exchanged. The program branches to exit and bi is stored in $5. The paired bez

instruction at exit toggles the branch bit back to zero. Fib(18), stored in $1, is copied to

the previously-empty $6.

Register $0 now contains Fib(17), so the inner loop is called in reverse to uncompute that

value. Register $4 still contains the address call from the original loop entry. Adding three,

or rexit - call, allows $4 to be used for the reverse exit location. Since the loop exited, $2

must be zero, and it is used for the reverse call condition. Register $5 contains b1 since the

exit condition evaluated true. In reverse, starting from bi, the inner loop uncomputes each

Fibonacci number and loop counter. Register $7 is decremented from seventeen to zero,
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and when all the Fibonacci numbers have been uncomputed, the reverse exit condition at

ti evaluates true and the program branches to rexit. Register $5 is changed from rcall

to rcall + 1 by performing a reverse add of -1, and the rbez instruction below call puts

the processor back into forward operation and branches to the instruction below rcall. At

this point all the registers other than $6 have been restored to their original values, so the

bottom five addi instructions clean up the remaining constants: Fib(l) in $1, N-1 in $2,

bottom in $3, t1 in $4, and call + 1 in $5. Had this been called as a subroutine of another

program, N would not be known at compile time, and the output of the routine would be

N and Fib(N).

At end, all registers contain zero except for $6, which contains Fib(18), or 2584.
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Part IV

Open Questions
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Chapter 10

Other Reversible Computer

Architectures

One of the early test chips built using the design methodology from Part II was an implemen-

tation of Margolus's Billiard Ball Model Cellular Automaton (BBMCA) [Mar87, FVA+98].

The chip, known as Flattop, is not a very convenient computer to program, but it is sim-

ple, universal, reversible, and scalable. Though the BBMCA model itself is only a two-

dimensional cellular automaton, Flattop could in principle be wired in a 3-D mesh as well,

for scalably executing reversible 3-D algorithms.

The following sections describe the BBMCA and the Flattop circuit design. Flattop is

named after the local pool hall, Flattop Johnny's. The Flattop design is obviously substan-

tially different from a conventional RISC processor, but it is a universal, reversible computing

engine. Future reversible computers may lie somewhere in the design space between Flat-

top and Pendulum, not as conventional' as the RISc-like Pendulum, but not as unusual as

Flattop.

'Only in relation to something as odd as a BBMCA could Pendulum be described as "conventional!"
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10.1 The BBMCA

In the billiard-ball model (BBM) of computation, logic values are modeled by the presence

or absence of "billiard balls" moving along predetermined paths in a grid. These classical,

elastic, hard spheres are constrained to travel at constant speed along straight lines. All

the balls in the system are synchronized so that all collisions happen at well defined grid

points. A logic gate is a point where two potential ball trajectories interact. Fixed walls

may be introduced to bounce signals around. Figure 10-1 shows two possible BBM logic

gates. The rectangles are fixed walls. The output is represented by the presence or absence

of a ball at the designated output points of the gate. Any reversible logic circuit can be

implemented in this model; it can be as universal as NAND.

A B A AeB

B

B A A
Crossover Gate The Feynman Gate

Figure 10-1: Two examples of BBM logic gates.

The BBM cellular automaton is a universal, reversible computing element based on these

interactions of hard spheres. Each cell is a four input, four output logic block. Balls that

enter the block alone continue along their original path, out the other side of the block. If

exactly two balls enter opposite corners of the block, they "bounce" off each other and exit

the block through the other two corners. For example, two balls entering on the left and

right of a block bounce and leave through the top and bottom of the block.

An electronic circuit implementation of the BBM cellular automaton simulates the billiard

ball model by representing balls and walls using high voltage values and represents empty

space using low voltage values. The logic blocks are arranged in a grid with nearest neighbor

communications. Because of the timing of the signals moving through the cells, the grid
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behaves as though it were actually two grids, offset from and overlapping each other. So

the grid is effectively subdivided into 2x 2 blocks, in two different overlapping meshes, offset

from each other by one cell in each of the x and y directions, as in Figure 10-2 (a). These

two meshes reversibly transform each of their 2 x 2 blocks.

I |

(a)
* 0--E7 Free motion.

(b)Olliion
01 Collision.

Figure 10-2: Billiard ball model meshes (a) and update rules (b).

On each cycle, the contents of each block in the array are modified according to the simple

reversible transformation mentioned above. Figure 10-2 (b) shows the BBMCA update

rules. The rules are applied independent of block orientation. All multiple-ball input

configurations other than those shown result in the input being passed to the output.

Essentially, if balls enter in a configuration other than the two shown, they bounce off

each other and return the way they came in. Fixed features can be constructed out of

several adjacent bits that are all one. Bits that are isolated move diagonally through the

array.

The CA is implemented by placing an SCRL processing element at the center of every 2x2

block on each of the two alignments. The processor takes its inputs from the block's four

cells (which are the wires coming from the processors in the centers of the four overlapping

blocks) and produces its outputs in those same cells, but shifted to an alternate bit-plane

(another set of four wires going back out to the neighboring processors). See Figure 10-3.

The wires going off the edges of the array can be folded back into the array to connect the

two bit-planes, or fed out to neighboring chips in a larger array.

A computational structure can be created by initializing the array with appropriate initial

conditions. When set into motion by clocking the circuits, the signals propagate according
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Figure 10-3: The 2x2 blocks of cells are updated by processing elements (circles) at the

center of each block. The state of a cell is stored on a wire (arrow) connecting two PEs.

to the rules of the CA and perform any desired computation. Programming the initial

conditions is somewhat difficult and is not treated here.

10.2 Circuit Design

This section describes the design of the Flattop circuitry and gives examples of some of the

more important components. Since this design was an early exercise, some of the notational

and metho'dological advancements are not used here.

The processing element consists of three levels of SCRL gates. The inputs to level one are

A, B, C, and D, and the outputs of each level are shown below.

" Level 1: A, B, C, D, and S = (A + C)(B + D).

* Level 2: A, B, C, D, S, S, and A0st = SA +SA(C + BD), and similarly for Boat, Cout,

and D0,t.

" Level 3: Aut, B0at, Cout, and D,,t.

In this logic, level one is mainly a buffer but also generates the S signal used in level two.

Level two computes the update function, and level three is another buffer. Level two must

produce S at its output so that S will be available for use by the reverse half of level two

to compute the inverse update function.
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10.2.1 Block Diagram

Figure 10-4 shows a schematic block diagram of a single processing element. Note the three

blocks, one for each of the three levels in the 3-phase SCRL pipeline. Each level shown below

contains both the forward and reverse SCRL circuitry.

Lollipop notation is used in these schematics for rail connections. The cell has four signal

inputs: A, B, C, and D, which come from the four neighboring cells, and the cell has four

corresponding outputs which go back out to those cells.

The SHIFT in and out signals are global signals shared by all cells; they tell the cells

whether to operate in initialization mode or normal mode. In initialization mode the array

of cells behaves as a shift register, and the array contents may be shifted in and out; in

normal mode, the array obeys the BBMCA update rules.

The boxes attached to the input are for setting initial conditions during HSPICE simulation

of the circuit. In layout, each cell measures approximately 170 pm x 90 pm.

rails rails rails

stage1 stage3
Au Acu But 0ai - - -AX C B C X stage2 AV i out -- l B 10Ut Aout 00o

bi , E) B B C C 125 9 Co uout 126 Bou

ci E C 120 C C Cout C Dout ' CouIt Cout co
di 0 E)shut TO U shOut2 out Dout do

shiftln shiftin shMiut C siiin shiftOut shOut hiftin shiftOut shiftOut
sIIIIOui t F n shiftput shiftOut

Figure 10-4: Block diagram of PE cell.

Figure 10-5 shows the schematic icon that represents an entire processing element. The

icon portrays the 2 x 2 block of BBMCA cells which the PE is updating, with the PE inputs

and outputs placed in the appropriate cells. The cell grid is rotated 45 degrees from the

representation in Figure 10-3 to show how the CA array is oriented with respect to the

edges of the chip. With this orientation, the array of processing elements can communicate

along pathways that run parallel to the chip edges, making layout easier.
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Figure 10-5: Icon for a single PE cell.

Figure 10-6 shows one corner of an array of these processing elements. In the upper left

corners are pathways used for initialization and reading out the whole array when used as

a shift-register. Along the edges of the array are edge cells which provide connections to

pins, allowing chip to chip communication during normal operation. There are not enough

pins to allow communication everywhere along the edge, so in other places the wires at the

edge loop around to feed back into the array. Every PE receives the global shift signals,

which run horizontally.

10.2.2 Detailed Schematics

Below are the schematics for the logic in the three levels of each cell. Figure 10-7 shows

the logic in level one which computes the inverses of the inputs, together with the inverse

of the S signal used in level two. Note that S is turned on when in shift mode. This logic

supports array initialization.

Figure 10-8(a) shows the gate used for computing each second-level output. The forward

part of level two includes four instances of this gate, differing as to which inputs are fed

to the A, B, C, and D pins, plus six "fast" inverters for generating the A, B, C, D, S, and

shift signals from their inverses using the f#2 and f#02 rails, plus one other inverter for

generating S on the level two output.
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Figure 10-6: One corner of an array of processing elements.

Finally, Figure 10-8(b) shows the gate that is repeated four times (with different pin as-

signents) in the forward part of stage three. This gate selects either A or the bit in the

opposite corner of the block for passing through to the output, depending on sh. If .sh is

on, input bits are passed to the opposite output bits, enabling the array as a whole to act

as one large shift register, which can be used to initialize the array contents.

10.3 Conclusion

This chapter describes the circuit design for a reversible, universal computer that is sig-

nificantly different from the Pendulum reversible processor. The architecture is parallel

and scalable to arbitrarily large arrays, assuming power supply inputs are repeated period-

ically. Global timing skew is not an issue since all data interconnections are local. Future

reversible computer architecture designs may lie somewhere in the designn space between

this compute engine and the Pendulum processor.
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Figure 10-7: Level one logic, S = sh + (A + C)(B + D).

(a) (b)

6AA

Figure 10-8: Gates that computes (a) A0 st in level two and (b) A' = sh A + sh C in stage

three.
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Chapter 11

Future Work

The Pendulum processor and design style presented here are a significant demonstration

of the possibilities of reversible logic design. The design process has unearthed a number

of opportunities for further study, including improved architectures, power supply design,

other logic families, logic complexity costs of reversible logic design and reversible logic

minimization, and software applications.

11.1 Other Architectures

The Pendulum processor architecture was chosen because it is a simple instruction set, and

it is similar to conventional machines. Mapping these somewhat conventional instructions

onto reversible logic is perhaps more difficult than necessary. A more inherently reversible

architecture, perhaps similar to the Flattop BBMCA, may map more simply to reversible

logic.

And while other architectures are being explored, the logic family used to implement them

may be modified. SCRL is most likely not the optimal reversible logic family, but much of the

notation and methodology developed in this dissertation is applicable to other logic families

and switching element technologies. For example, it is possible to build a fully-reversible

six-clock-rail shift register. Using fewer clocks may be possible. A stronger theoretical basis
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for the number of clocks required for full reversibility in various applications could be useful.

11.2 Power Supplies

Much discussion in the adiabatic computing literature is devoted to the generation of the

gradually swinging rails needed for various adiabatic logic families. While this disserta-

tion has assumed the existence of the needed supply rails, development of an appropriate

energy-recycling, constant-current power supply is still an open question. The ISI "blip

circuit" [AST96], stepwise capacitor charging [SK94], and MIT's transmission line clock

drivers [BK98], are steps toward this end.

11.3 Reversible Computer Analysis

This dissertation has described the synthesis steps needed to build a reversible computer.

The analysis of such a machine, an exploration of the tradeoffs between erasing bits and

maintaining full reversibility, is needed if reversible computing is to be a practical tool

for designing compute engines. It would be useful to study conventional machines further

to determine a hierarchy of "hot spots" of energy dissipation due to bit erasure. Energy

dissipation could be reduced by selective application of reversible techniques to the compo-

nents that both erase a large number of bits and that may easily be converted to reversible

operation.

11.4 Reversible Hardware Theory

This dissertation has occasionally mentioned the engineering tradeoffs involved in instruc-

tion set design relating to ensuring that the instruction set is "guaranteed" to be reversible.

In cases such as whether or not branch instructions are required to have a paired reverse

branch instruction, no particular proof is given and the instruction set merely appears to be
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"more"l reversible in the sense that fewer demands are put on the compiler or programmer

to generate code that will run forwards and backwards properly.

This poses the interesting question of how to rigorously prove or guarantee that an arbi-

trary stream of bits will be executed as a fully reversible program. At a lower level, it

is also interesting to ask how to prove that a set of circuits will perform microscopically

reversible operations on arbitrary bit strings. For an SCRL block, containing a forward and

reverse stage, the inputs and outputs must conform to the SCRL rules in order to maintain

reversibility. For a simple block, reversibility may be proven by exhaustively testing the

set of inputs and outputs that satisfy the rules. Guaranteeing that a group of such blocks

will still be reversible when wired together relies on the fact that each block will generate

as output a set of signals that respect the SCRL rules. In general, however, it is difficult to

guarantee that a large system composed of smaller blocks is reversible unless each block is

known to be reversible and each interface between blocks follows scRL rules. This is hardly

a rigorous testing scheme, and a more thorough or general technique would be useful in

designing reversible circuits.

11.5 Reversible Adder Logic Minimization

The number of inverters needed for operand distribution in The Wedge suggests that some

adder other than a straightforward ripple carry might require less logic. Techniques tradi-

tionally used to speed up addition may be useful in reducing the quantity of logic required

by a reversible adder. I first considered performing addition two bits at a time. The logic

seemed too complex at the time, so I designed the relatively simple ripple carry adder. After

seeing how big The Wedge layout actually is, multi-bit addition logic may make more sense.

The trouble is that unless the entire N bit addition is performed with one big non-expanding

operation, the adder must have an unadd path to uncompute the carry bits. Since the Pen-

dulum ALU and PCU adders required the most area on the chip, improvements to the

adders may save substantial silicon area.
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11.6 Software

The schematic design and layout for XRAM, Flattop, and Pendulum were all done by hand.

The structures involved exhibit substantial regularity and automatic generation may be

possible. Most conventional integrated circuit designs are automated to some degree, and

these automation techniques seem applicable to reversible logic design. The regularity of

SCRL layout especially resembles conventional standard cell layout.

Also, at a higher level, reversible compiler technology is very young. An assembler was

developed for the Pendulum processor, and Frank's work [Fra99] suggests some directions

for compiler design, but more work is clearly needed.
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Chapter 12

Conclusion

Recall my thesis from the introduction:

There exists a set of reversible primitive modules that may be combined ac-

cording to a set of simple rules to create larger systems, which are themselves

reversible primitive modules. These modules may be combined to create a fully

reversible, universal computer.

I have shown in this dissertation the rules for creating primitive modules and connecting

them together. I developed a notation for reversible logic schematics. I have demonstrated

this thesis buy designing, fabricating, and testing a fully reversible microprocessor.

Building reversible systems using this methodology uses resources which are comparable to

a conventional microprocessor. Existing CAD tools and silicon technology are sufficient for

reversible computer design. The layout was performed by hand, without automated routing

or layout synthesis, although the regularity of SCRL layout suggests that automation may

be used in the future. Power clock routing is regular and does not consume unreasonable

chip area. Logic layout is also regular and comparable to conventional layout. The 12-bit

Pendulum processor consumed less than a square centimeter of silicon in a no-longer-modern

process technology.
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On the architectural side, I have shown the issues involved in saving all the information in a

microprocessor. The way conventional programs are written is oriented very much towards

throwing away information, but it is possible to avoid this information erasure.

SCRL CMOS logic is probably not going to replace conventional CMOS logic in high perfor-

inance systems in the near term, but this work has demonstrated that building a reversible

system is not only possible, but can be performed systematically and on a substantial scale.
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Appendix A

The Pendulum Instruction Set

Architecture (PISA)

Assembly language programming on the Pendulum processor resembles a cross between

a standard RIsc architecture [KH92] and a PDP-8, with a few modifications to support

reversibility. The Pendulum instruction set is decidedly "RISC-y". Instructions are not

very powerful but are deliberately simple so that the programmer can keep track of the

information flow. The programmer must be aware of a few constraints. First, memory

accesses are always an exchange. To copy a value of a register, ensure that one register

is clear (by exchanging it with an empty memory location if necessary) and add the other

register to it in copy+-copy+original where copy is initially clear1 . Second, control flow

operations must appear in identical pairs.

Register-type instructions include all register to register operations, including logical, arith-

metic, shift, and rotate. They take one, two, or three register addresses. For non-expanding

instructions, such as ADD, the destination register rsd must be the same as the first source

register. Expanding instructions must specify three different registers. This is very different

from other architectures, but the inconvenience for the programmer should be small.

"Clear" may be different from "zero." A cleared location is known to be zero. A location may contain
zero as a product of computation and not be cleared.
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The following pages contain the syntax and description for execution of all Pendulum As-

sembly Language instructions. No exceptions are generated during any instructions.

The format and notation of the instruction set details is taken from the MIPS R2000

architecture reference manual [KH92].

Symbol Meaning

Assignment
Bit string concatenation

zu Replication of bit value x into a y-bit string. Note that x is

always a single-bit value
xy..z Selection of bits y through z of bit string x. Little endian bit

notation is always used. If y is less than z, this expression is

an empty (zero length) bit string.
Logical inversion

+ Two's complement addition
- Two's complement subtraction

< Two's complement less than comparison

neg Two's complement negation
and Bitwise logic AND
or Bitwise logic OR

xor Bitwise logic XOR
nor Bitwise logic NOR
GPR[x] General Register x

PC Program Counter
MEM[x] Memory Location x

Table A.1: Instruction Operation Notations

Since one of the earliest design decisions was to base Pendulum on a 32 bit RISC machine,

the instruction word encoding resembles the MIPS R2000 instruction word encoding. Later

reduction of the Pendulum datapath to 8 bits shrunk a number of instruction bit fields.

Increase in the datapath width to 12 bits made the instruction set somewhat resemble that

of the PDP-8.

The opcode field is limited to five bits so that the immediate field can be large. The in-

struction set is limited to 32 types of instructions. Pendulum uses three types of instruction

encodings, listed in Table A.2.

Register instruction types and the exchange instruction use an R-type encoding. The in-
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struction word specifies a destination register and two source registers. Non-expanding in-

structions must have rd and rs identical and different from rt, and expanding instructions

must have all three registers different. To emphasize this point, the instruction encodings

for non-expanding operations identify the three registers as rsd, rsd, and rt. The second

source register is specified to be zero for exchange operations.

R-type op | rd
5 bits 3 bits

| s | rt
3 bits 3 bits

B-type I b op ra I rb
5 bits 3 bits 3 bits

I-type op rd rs
5 bits 3 bits 3 bits

0
6 bits

0
9 bits

immediate
9 bits

Table A.2: Instruction Formats

Branches use B-type instruction encoding and specify two registers, one containing the ad-

dress to be jumped to and the other containing the value on which the branch is conditional.

The two registers must be different.

All non-expanding R-type operations must have rd and rs equal. All expanding R-type

operations must have all three registers different.

The immediate instructions, I-type, are identical to R-type encodings with respect to ex-

panding and non-expanding operations, except that instead of an rt register, immediate

instructions specify a 9-bit sign extended immediate value.

Instruction mnemonic: ADD

Instruction name: Add

ADD rsd rsd rt

01001

5 bits 3 bits 3 bits 3 bits

Format: ADD rsd, rt

0

00 0000

6 bits

Description:
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The contents of register rsd and register rt are added to form a 12-bit result. The result is

placed in register rsd.

Operation:

GPR[rsd] *- GPR[rsd] + GPR[rt]

Instruction Mnemonic: ADDI

Instruction Name: Add Immediate

ADDI rsd rsd immediate

00001

5 bits 3 bits 3 bits 9 bits

Format: ADDI rsd, immediate

Description:

The 9-bit immediate is sign extended and added to the contents of register rsd. The result

is placed in register rsd.

Operation:

GPR[rsd] +- GPR[rsd] + (immediate8 )3 || immediate 8.

Instruction Mnemonic: ANDIX

Instruction Name: And Immediate-Xor

ANDIX rd rs immediate

10000

5 bits 3 bits 3 bits 9 bits

Format: ANDIX rd, rs, immediate

Description:

The 9-bit immediate is sign extended and combined with the contents of register rs in a

bit-wise logical AND operation. The result is combined in a logical XOR with the contents

of register rd and is placed in register rd.
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Operation:

GPR[rd] +- (GPR[rs] and (immediate8 )3 || immediate 8.) xor GPR[rd]

Instruction Mnemonic: ANDX

Instruction Name: And-Xor

ANDX rd rs rt

11000

5 bits 3 bits 3 bits 3 bits

Format: ANDX rd, rs, rt

0

00 0000

6 bits

Description:

The contents of register rs and register rt are combined in a bit-wise logical AND operation.

The result is combined in a logical XOR with the contents of register rd and is placed in

register rd.

Operation:

GPR[rd] +- (GPR[rs] and GPR[rt]) xor GPR[rd]

Instruction Mnemonic: BEZ

Instruction Name: Branch On

BEZ ra rb

10100

5 bits 3 bits 3 bits

Format: BEZ ra, rb

Equal to Zero

0

0 0000 0000

9 bits

Description:

The contents of register rb are compared to zero. If the contents of the register equal zero,

the program branches to the address specified in register ra by exchanging the contents of

ra with the value of the program counter.

Operation:
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if GPR[rb] = 012 then

PC +- GPR[ra]

GPR[ra] +- PC

endif

Instruction Mnemo

Instruction Name:

nic: BLTZ

Branch On Less Than Zero

BLTZ ra rb 0

10101 0 0000 0000

5 bits 3 bits 3 bits 9 bits

Format: BLTZ ra, rb

Description:

If the contents of register rb have the sign bit set the program branches to the address

specified in register ra by exchanging the contents of ra with the value of the program

counter.

Operation:

if GPR[rb]11 = 1 then

PC +- GPR[ra]

GPR[ra] <- PC

endif

Instruction Mnemonic: EXCH

Instruction Name: Exchange

EXCH exch addr

10011

5 bits 3 bits 3 bits

Format: EXCH exch, addr

0

0000 0000

9 bits
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Description:

The contents of register exch are placed at the data memory location specified by the

contents of register addr. The contents of the data memory location specified by the contents

of register addr are placed in register exch.

Operation:

GPR[exch] <- MEM[addr]

MEM[addr] +- GPR[exch]

Instruction Mnemonic: ORIX

Instruction Name: Or Immed

ORIX rd rs

10001

5 bits 3 bits 3 bits

Format: ORIX rd, rs, immediate

iate-Xor

imme diate

9 bits

Description:

The 9-bit immediate is sign extended and combined with the contents of register rs in a

bit-wise logical OR operation. The result is combined in a logical XOR with the contents

of register rd and is placed in register rd.

Operation:

GPR[rd] <- (GPR[rs] or (immediate8 )3 || immediate 8.) xor GPR[rd]

Instruction mnemonic: ORX

Instruction name: Or-Xor

ORX rd rs rt 0

11001 00 0000

5 bits 3 bits 3 bits 3 bits 6 bits

Format: ORX rd, rs, rt

Description:
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The contents of register rs and register rt are combined in a bit-wise logical OR operation.

The result is combined in a logical XOR with the contents of register rd and is placed in

register rd.

Operation:

GPR[rd] *- (GPR[rs] or GPR[rt]) xor GPR[rd]

Instruction Mnemonic: RBEZ

Instruction Name: Reverse Direction, Branch

RBEZ ra rb 0

10110 0 0000 0000

5 bits 3 bits 3 bits 9 bits

Format: RBEZ ra, rb

On Equal to Zero

Description:

The contents of register rb are compared to zero. If the contents of the register equal zero,

the program branches to the address specified in register ra by exchanging the contents of

ra with the value of the program counter. The global direction bit is also toggled when this

instruction is executed.

Operation:

if GPR[rb] = 012 then

PC +- GPR[ra]

GPR[ra] +- PC

direction +- !direction

endif

Instruction Mnemonic: RBLTZ

Instruction Name: Reverse Direction, Branch On Less Than Zero
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RBLTZ ra rb 0

10111 0 0000 0000

5 bits 3 bits 3 bits 9 bits

Format: RBLTZ ra, rb

Description:

If the contents of register rb have the sign bit set the program branches to the address

specified in register ra by exchanging the contents of ra with the value of the program

counter. The global direction bit is also toggled when this instruction is executed.

Operation:

if GPR[rb]i = 1 then

PC <- GPR[ra]

GPR[ra] <- PC

direction <- !direction

endif

Instruction mnemonic: RL

Instruction name: Rotate Left

RL rsd rsd 0

00100 000

5 bits 3 bits 3 bits 3 bits

Format: RL rsd

0

00 0000

6 bits

Description:

The contents of register rsd are rotated left one bit. The result is placed in register rsd.

Operation:

GPR[rsd] +- GPR[rsd]1 o oll GPR[rsd]ll

Instruction mnemonic: RR
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Instruction name: Rotate Right

RR rsd rsd 0 0

00101 000 00 0000

5 bits 3 bits 3 bits 3 bits 6 bits

Format: RR rsd

Description:

The contents of register rsd are rotated right one bit. The result is placed in register rsd.

Operation:

GPR[rsd] +- GPR[rsdloll GPR[rsd]ii..1

Instruction

Instruction

SLLX

11100

5 bits

Format: SL

mnemonic: SLLX

name: Shift Left Logical-Xor

rd rs 0

0000 00

3 bits 3 bits 3 bits 6b

LX rd, rs

Description:

The contents of register rs are shifted left by one bit, inserting zero into the low order bit.

The result is combined in a logical XOR with the contents of register rd and is placed in

register rd.

Operation:

GPR[rd] +- (GPR[rs]10..oi 0) xor GPR[rd]
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Instruction mnemonic: SRAX

Instruction name: Shift Right Arithmetic-Xor



SRAX rd rs 0 0

11110 0000 00 0000

5 bits 3 bits 3 bits 3 bits 6 bits

Format: SRAX rd, rs

Description:

The contents of register rs are shifted right by one bit, sign extending the high order bit.

The result is combined in a logical XOR with the contents of register rd and is placed in

register rd.

Operation:

GPR[rd] -- (GPR[rs]i || GPR[rs] 1 ..1) xor GPR[rd]

Instruction

Instruction

SRLX

11101

5 bits

mnemonic: SRLX

name: Shift Right Logical-Xor

rd rs 0 0

0000 00 0000

3 bits 3 bits 3 bits 6 bits

Format: SRLX rd, rs

Description:

The contents of register rs are shifted right by one bit, inserting zero into the high order

bit. The result is combined in a logical XOR with the contents of register rd and is placed

in register rd.

Operation:

GPR[rd] <- (0 || GPR[rs]l..1) xor GPR[rd

Instruction mnemonic: XOR

Instruction name: Exclusive Or
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XOR rsd rsd rt 0

01010 00 0000

5 bits 3 bits 3 bits 3 bits 6 bits

Format: XOR rsd, rs

Description:

The contents of register rsd and register rs are combined in a bit-wise logical exclusive OR

operation. The result is placed in register rsd.

Operation:

GPR[rsd] +- GPR[rsd] xor GPR[rs]

Instruction Mnemonic: XORI

Instruction Name: Xor Immediate

XORI rsd rsd immediate

00010

5 bits 3 bits 3 bits 9 bits

Format: XORI rsd, immediate

Description:

The 9-bit immediate is sign extended and combined with the contents of register rsd in a

bit-wise logical XOR operation. The result is placed in register rsd.

Operation:

GPR[rsd] +- GPR[rsd] xor (immediate8 )3 || immediate 8 .
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