Computer Architecture

A Quantitative Approach, Fifth Edition

Chapter 4

Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Introduction

- SIMD architectures can exploit significant datalevel parallelism for:
- matrix-oriented scientific computing
- media-oriented image and sound processors
- SIMD is more energy efficient than MIMD
- Only needs to fetch one instruction per data operation
- Makes SIMD attractive for personal mobile devices
- SIMD allows programmer to continue to think sequentially

SIMD Parallelism

- Vector architectures
- SIMD extensions
- Graphics Processor Units (GPUs)
- For x86 processors:
- Expect two additional cores per chip per year
- SIMD width to double every four years
- Potential speedup from SIMD to be twice that from MIMD!

Vector Architectures

- Basic idea:
" Read sets of data elements into "vector registers"
- Operate on those registers
- Disperse the results back into memory
- Registers are controlled by compiler
- Used to hide memory latency
- Leverage memory bandwidth
- Example architecture: VMIPS
- Loosely based on Cray-1
- Vector registers
- Each register holds a 64-element, 64 bits/element vector
- Register file has 16 read ports and 8 write ports
- Vector functional units
- Fully pipelined
- Data and control hazards are detected
- Vector load-store unit
- Fully pipelined
- One word per clock cycle after initial latency
- Scalar registers
- 32 general-purpose registers
- 32 floating-point registers

VMIPS Instructions

- ADDVV.D: add two vectors
- ADDVS.D: add vector to a scalar
- LV/SV: vector load and vector store from address
- Example: DAXPY
L.D F0,a ; load scalar a

LV V1,Rx ; load vector X
MULVS.D V2,V1,F0; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3; add
SV Ry,V4 ; store the result

- Requires 6 instructions vs. almost 600 for MIPS

Vector Execution Time

- Execution time depends on three factors:
- Length of operand vectors
- Structural hazards
- Data dependencies
- VMIPS functional units consume one element per clock cycle
- Execution time is approximately the vector length
- Convey
- Set of vector instructions that could potentially execute together

Chimes

- Sequences with read-after-write dependency hazards can be in the same convey via chaining
- Chaining
- Allows a vector operation to start as soon as the individual elements of its vector source operand become available
- Chime
- Unit of time to execute one convey
- m conveys executes in m chimes
- For vector length of n, requires $m \times n$ clock cycles

Example

LV	V1,Rx	;load vector X
MULVS.D	V2,V1,F0	; vector -scalar multiply
LV	V3,Ry	;load vector Y
ADDVV.D	V4,V2,V3	;add two vectors
SV	Ry,V4	;store the sum

Convoys:

1	LV	MULVS.D
2	LV	ADDVV.D
3	SV	

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64×3 = 192 clock cycles

Challenges

- Start up time
- Latency of vector functional unit
- Assume the same as Cray-1
- Floating-point add => 6 clock cycles
- Floating-point multiply => 7 clock cycles
- Floating-point divide => 20 clock cycles
- Vector load => 12 clock cycles
- Improvements:
- > 1 element per clock cycle
- Non-64 wide vectors
- IF statements in vector code
- Memory system optimizations to support vector processors
- Multiple dimensional matrices
- Sparse matrices
- Programming a vector computer

Multiple Lanes

- Element n of vector register A is "hardwired" to element n of vector register B
- Allows for multiple hardware lanes

Vector Length Register

- Vector length not known at compile time?
- Use Vector Length Register (VLR)
- Use strip mining for vectors over the maximum length:

```
low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/
    for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
        Y[i] = a * X[i] + Y[i] ; /*main operation*/
    low = low + VL; /*start of next vector*/
    VL = MVL; /*reset the length to maximum vector length*/
}
```


Vector Mask Registers

- Consider:

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<64 ; \mathrm{i}=\mathrm{i}+1) \\
& \text { if }(\mathrm{X}[\mathrm{i}] \text { ! }=0) \\
& \quad X[i]=X[i]-Y[i] ;
\end{aligned}
$$

- Use vector mask register to "disable" elements:

LV	V1,Rx	;load vector X into V1
LV	V2,Ry	;load vector Y
L.D	F0,\#0	;load FP zero into F0
SNEVS.D	D V1,F0	;sets VM(i) to 1 if V1(i)!=F0
SUBVV.D	V1,V1,V2	2 ;subtract under vector mask
SV	Rx,V1	;store the result in X

- GFLOPS rate decreases!

Memory Banks

- Memory system must be designed to support high bandwidth for vector loads and stores
- Spread accesses across multiple banks
- Control bank addresses independently
- Load or store non sequential words
- Support multiple vector processors sharing the same memory
- Example:
- 32 processors, each generating 4 loads and 2 stores/cycle
- Processor cycle time is 2.167 ns , SRAM cycle time is 15 ns
- How many memory banks needed?

Stride

- Consider:

$$
\begin{aligned}
& \text { for (} \mathrm{i}=0 ; \mathrm{i}<100 \text {; } \mathrm{i}=\mathrm{i}+1 \text {) } \\
& \text { for (} \mathrm{j}=0 ; \mathrm{j}<100 ; \mathrm{j}=\mathrm{j}+1 \text {) \{ } \\
& A[i] j]=0.0 \text {; } \\
& \text { for (} k=0 ; k<100 ; k=k+1 \text {) } \\
& A[i][j]=A[i][j]+B[i][k] * D[k][j] ; \\
& \text { \} }
\end{aligned}
$$

- Must vectorize multiplication of rows of B with columns of D
- Use non-unit stride
- Bank conflict (stall) occurs when the same bank is hit faster than bank busy time:
- \#banks / LCM(stride,\#banks) < bank busy time

Scatter-Gather

- Consider:

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}=\mathrm{i}+1) \\
& \qquad \quad \mathrm{A}[\mathrm{~K}[\mathrm{i}]]=\mathrm{A}[\mathrm{~K}[i]]+\mathrm{C}[\mathrm{M}[\mathrm{i}]] ;
\end{aligned}
$$

- Use index vector:

LV Vk, Rk ;load K
LVI Va, (Ra+Vk) ;load A[K[]]
LV Vm, Rm ;load M
LVI Vc, (Rc+Vm) ;load C[M[]]
ADDVV.D Va, Va, Vc ;add them
SVI (Ra+Vk), Va ;store A[K[]]

Programming Vec. Architectures

- Compilers can provide feedback to programmers
- Programmers can provide hints to compiler

Benchmark name	Operations executed in vector mode, compiler-optimized	Operations executed in vector mode, with programmer aid	Speedup from hint optimization
BDNA	96.1%	97.2%	1.52
MG3D	95.1%	94.5%	1.00
FLO52	91.5%	88.7%	N/A
ARC3D	91.1%	92.0%	1.01
SPEC77	90.3%	90.4%	1.07
MDG	87.7%	94.2%	1.49
TRFD	69.8%	73.7%	1.67
DYFESM	68.8%	65.6%	N/A
ADM	42.9%	59.6%	3.60
OCEAN	42.8%	91.2%	3.92
TRACK	14.4%	54.6%	2.52
SPICE	11.5%	79.9%	4.06
QCD	4.2%	75.1%	2.15

SIMD Extensions

- Media applications operate on data types narrower than the native word size
- Example: disconnect carry chains to "partition" adder
- Limitations, compared to vector instructions:
- Number of data operands encoded into op code
- No sophisticated addressing modes (strided, scattergather)
- No mask registers

SIMD Implementations

- Implementations:
- Intel MMX (1996)
- Eight 8-bit integer ops or four 16-bit integer ops
- Streaming SIMD Extensions (SSE) (1999)
- Eight 16-bit integer ops
- Four 32-bit integer/fp ops or two 64-bit integer/fp ops
- Advanced Vector Extensions (2010)
- Four 64-bit integer/fp ops
- Operands must be consecutive and aligned memory locations

Example SIMD Code

- Example DXPY:
L.D F0,a ;load scalar a MOV F1, F0 ;copy a into F1 for SIMD MUL MOV F2, F0 ;copy a into F2 for SIMD MUL MOV F3, F0 ;copy a into F3 for SIMD MUL
DADDIU R4,Rx,\#512 ;last address to load
Loop: L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]
MUL.4D F4,F4,F0 $; a \times X[i], a \times X[i+1], a \times X[i+2], a \times X[i+3]$
L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]

ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., $a \times X[i+3]+Y[i+3]$
S.4D $\quad 0[R y], F 8 \quad$;store into $\mathrm{Y}[\mathrm{i}], \mathrm{Y}[i+1], \mathrm{Y}[i+2], \mathrm{Y}[i+3]$

DADDIU $R x, R x, \# 32$;increment index to X
DADDIU Ry,Ry,\#32 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,Loop ;check if done

Roofline Performance Model

- Basic idea:
- Plot peak floating-point throughput as a function of arithmetic intensity
- Ties together floating-point performance and memory performance for a target machine
- Arithmetic intensity
- Floating-point operations per byte read

Examples

- Attainable GFLOPs/sec Min = (Peak Memory BW \times Arithmetic Intensity, Peak Floating Point Perf.)

Graphical Processing Units

- Given the hardware invested to do graphics well, how can be supplement it to improve performance of a wider range of applications?
- Basic idea:
- Heterogeneous execution model
- CPU is the host, GPU is the device
- Develop a C-like programming language for GPU
- Unify all forms of GPU parallelism as CUDA thread
- Programming model is "Single Instruction Multiple Thread"

Threads and Blocks

- A thread is associated with each data element
- Threads are organized into blocks
- Blocks are organized into a grid
- GPU hardware handles thread management, not applications or OS

NVIDIA GPU Architecture

- Similarities to vector machines:
- Works well with data-level parallel problems
- Scatter-gather transfers
- Mask registers
- Large register files
- Differences:
- No scalar processor
- Uses multithreading to hide memory latency
- Has many functional units, as opposed to a few deeply pipelined units like a vector processor

Example

- Multiply two vectors of length 8192
- Code that works over all elements is the grid
- Thread blocks break this down into manageable sizes
- 512 threads per block
- SIMD instruction executes 32 elements at a time
- Thus grid size = 16 blocks
- Block is analogous to a strip-mined vector loop with vector length of 32
- Block is assigned to a multithreaded SIMD processor by the thread block scheduler
- Current-generation GPUs (Fermi) have 7-15 multithreaded SIMD processors

Terminology

- Threads of SIMD instructions
- Each has its own PC
- Thread scheduler uses scoreboard to dispatch
- No data dependencies between threads!
- Keeps track of up to 48 threads of SIMD instructions - Hides memory latency
- Thread block scheduler schedules blocks to SIMD processors
- Within each SIMD processor:
- 32 SIMD lanes
- Wide and shallow compared to vector processors

Example

- NVIDIA GPU has 32,768 registers
- Divided into lanes
- Each SIMD thread is limited to 64 registers
- SIMD thread has up to:
- 64 vector registers of 32 32-bit elements
- 32 vector registers of 32 64-bit elements
- Fermi has 16 physical SIMD lanes, each containing 2048 registers

NVIDIA Instruction Set Arch.

- ISA is an abstraction of the hardware instruction set
- "Parallel Thread Execution (PTX)"
- Uses virtual registers
- Translation to machine code is performed in software
- Example:
shl.s32R8, blockldx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadldx; R8 = $i=$ my CUDA thread ID
Id.global.f64 RD0, [X+R8] ; RD0 = X[i]
Id.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

Conditional Branching

- Like vector architectures, GPU branch hardware uses internal masks
- Also uses
- Branch synchronization stack
- Entries consist of masks for each SIMD lane
- I.e. which threads commit their results (all threads execute)
- Instruction markers to manage when a branch diverges into multiple execution paths
- Push on divergent branch
-and when paths converge
- Act as barriers
- Pops stack
- Per-thread-lane 1-bit predicate register, specified by programmer

Example

$$
\begin{aligned}
& \text { if }(X[i]!=0) \\
& X[i]=X[i]-Y[i] ; \\
& \text { else } X[i]=Z[i] ; \\
& \text { Id.global.f64 RD0, [X+R8] ; RD0 = X[i] } \\
& \text { setp.neq.s32 P1, RD0, \#0 ; P1 is predicate register } 1 \\
& \text { @!P1, bra ELSE1, *Push ; Push old mask, set new mask bits } \\
& \text {; if P1 false, go to ELSE1 } \\
& \text { Id.global.f64 RD2, [Y+R8] ; RD2 = Y[i] } \\
& \text { sub.f64 RD0, RD0, RD2 ; Difference in RD0 } \\
& \text { st.global.f64 [X+R8], RD0 ; X[i] = RD0 } \\
& \text { @P1, bra ENDIF1, *Comp ; complement mask bits } \\
& \text {; if P1 true, go to ENDIF1 } \\
& \text { ELSE1: Id.global.f64 RD0, [Z+R8]; RD0 = Z[i] } \\
& \text { st.global.f64 [X+R8], RD0 ; X[i] = RD0 } \\
& \text { ENDIF1: <next instruction>, *Pop ; pop to restore old mask }
\end{aligned}
$$

NVIDIA GPU Memory Structures

- Each SIMD Lane has private section of off-chip DRAM - "Private memory"
- Contains stack frame, spilling registers, and private variables
- Each multithreaded SIMD processor also has local memory
- Shared by SIMD lanes / threads within a block
- Memory shared by SIMD processors is GPU Memory
- Host can read and write GPU memory

Fermi Architecture Innovations

- Each SIMD processor has
- Two SIMD thread schedulers, two instruction dispatch units
- 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 special function units
- Thus, two threads of SIMD instructions are scheduled every two clock cycles
- Fast double precision
- Caches for GPU memory
- 64-bit addressing and unified address space
- Error correcting codes
- Faster context switching
- Faster atomic instructions

Fermi Multithreaded SIMD Proc.

Fermi streaming multiprocessor (SM)

Copyright © 2012, Elsevier Inc. All rights reserved.

Loop-Level Parallelism

- Focuses on determining whether data accesses in later iterations are dependent on data values produced in earlier iterations
- Loop-carried dependence
- Example 1:
for (i=999; i>=0; i=i-1)

$$
x[i]=x[i]+s ;
$$

- No loop-carried dependence

Loop-Level Parallelism

- Example 2:

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<100 ; \mathrm{i}=\mathrm{i}+1)\{ \\
& \mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{i}]+\mathrm{C}[\mathrm{i}] ; /^{*} \mathrm{~S} 1 * / \\
& \mathrm{B}[i+1]=\mathrm{B}[\mathrm{i}]+\mathrm{A}[i+1] ; /^{*} \mathrm{~S} 2 * /
\end{aligned}
$$

\}

- S1 and S2 use values computed by S1 in previous iteration
- S2 uses value computed by S1 in same iteration

Loop-Level Parallelism

- Example 3:
for ($\mathrm{i}=0$; $\mathrm{i}<100$; $\mathrm{i}=\mathrm{i}+1$) \{
A[i] = A[i] + B[i]; /* S1 */
$\mathrm{B}[i+1]=\mathrm{C}[\mathrm{i}]+\mathrm{D}[\mathrm{i}] ; /^{*} \mathrm{~S} 2$ */
\}
- S1 uses value computed by S2 in previous iteration but dependence is not circular so loop is parallel
- Transform to:

$$
\mathrm{A}[0]=\mathrm{A}[0]+\mathrm{B}[0] ;
$$

$$
\text { for }(i=0 ; i<99 ; i=i+1)\{
$$

$$
\mathrm{B}[\mathrm{i}+1]=\mathrm{C}[\mathrm{i}]+\mathrm{D}[\mathrm{i}] ;
$$

$$
\mathrm{A}[i+1]=\mathrm{A}[i+1]+\mathrm{B}[i+1] ;
$$

\}
$\mathrm{B}[100]=\mathrm{C}[99]+\mathrm{D}[99]$;

Loop-Level Parallelism

- Example 4:
for ($\mathrm{i}=0 ; \mathrm{i}<100 ; \mathrm{i}=\mathrm{i}+1$) \{

$$
\begin{aligned}
& \mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]+\mathrm{C}[\mathrm{i}] ; \\
& \mathrm{D}[\mathrm{i}]=\mathrm{A}[\mathrm{i}] \text { * } \mathrm{E}[\mathrm{i}] ;
\end{aligned}
$$

$\}$

- Example 5:

$$
\begin{gathered}
\text { for }(i=1 ; i<100 ; i=i+1)\{ \\
\quad Y[i]=Y[i-1]+Y[i] ;
\end{gathered}
$$

\}

Finding dependencies

- Assume indices are affine:
- $a x i+b$ (i is loop index)
- Assume:
- Store to $a \times i+b$, then
- Load from cxi+d
- i runs from m to n
- Dependence exists if:
- Given j, k such that $m \leq j \leq n, m \leq k \leq n$
- Store to $a \times j+b$, load from $a \times k+d$, and $a \times j+b=c \times k+d$

Finding dependencies

- Generally cannot determine at compile time
- Test for absence of a dependence:
- GCD test:
- If a dependency exists, GCD(c,a) must evenly divide ($d-b$)
- Example:

$$
\begin{aligned}
& \text { for }(i=0 ; i<100 ; i=i+1)\{ \\
& X\left[2^{*} i+3\right]=X\left[2^{*}\right]{ }^{*} 5.0 ;
\end{aligned}
$$

Finding dependencies

- Example 2:

$$
\begin{gathered}
\text { for (i=0; i<100; i=i+1) \{ } \\
Y[i]=X[i] / c ; /^{*} S 1^{* /} \\
X[i]=X[i]+c ; /^{*} S 2 * / \\
Z[i]=Y[i]+c ; /^{*} S 3 * / \\
Y[i]=c-Y[i] ; /^{*} S 4 * /
\end{gathered}
$$

\}

- Watch for antidependencies and output dependencies

Finding dependencies

- Example 2:

$$
\begin{gathered}
\text { for (i=0; i<100; i=i+1) \{ } \\
Y[i]=X[i] / c ; /^{*} S 1^{* /} \\
X[i]=X[i]+c ; /^{*} S 2 * / \\
Z[i]=Y[i]+c ; /^{*} S 3 * / \\
Y[i]=c-Y[i] ; /^{*} S 4 * /
\end{gathered}
$$

\}

- Watch for antidependencies and output dependencies

Reductions

- Reduction Operation:
for (i=9999; i>=0; i=i-1)

$$
\text { sum = sum + } x[i] \text { * } y[i] ;
$$

- Transform to...
for (i=9999; i>=0; i=i-1)
sum [i] = $x[i]$ * y[i];
for (i=9999; i>=0; i=i-1)
finalsum = finalsum + sum[i];
- Do on p processors:
for (i=999; i>=0; i=i-1)
finalsum[p] = finalsum[p] + sum[i+1000*p];
- Note: assumes associativity!

