
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Programmers want unlimited amounts of memory with
low latency

 Fast memory technology is more expensive per bit than
slower memory

 Solution: organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest

memory
 Incrementally smaller and faster memories, each containing a

subset of the memory below it, proceed in steps up toward the
processor

 Temporal and spatial locality insures that nearly all
references can be found in smaller memories

 Gives the allusion of a large, fast memory being presented to the
processor

Introduc tion

3Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy
Introduc tion

4Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Performance Gap
Introduc tion

5Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Design

 Memory hierarchy design becomes more crucial
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock
 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +
 12.8 billion 128-bit instruction references
 = 409.6 GB/s!

 DRAM bandwidth is only 6% of this (25 GB/s)
 Requires:

 Multi-port, pipelined caches
 Two levels of cache per core
 Shared third-level cache on chip

Introduc tion

6Copyright © 2012, Elsevier Inc. All rights reserved.

Performance and Power

 High-end microprocessors have >10 MB on-chip
cache
 Consumes large amount of area and power budget

Introduc tion

7

Memory Hierarchy: Terminology
 Hit: data appears in some block in the upper level (example: Block X)

 Hit Rate: the fraction of memory access found in the upper level
 Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
 Miss: data needs to be retrieve from a block in the lower level (Block

Y)
 Miss Rate = 1 - (Hit Rate)
 Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
 Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

8

Cache Measures
 Hit rate: fraction found in that level

 So high that usually talk about Miss rate
 Miss rate fallacy: as MIPS to CPU performance,

miss rate to average memory access time in memory
 Average memory-access time

= Hit time + Miss rate x Miss penalty
(ns or clocks)

 Miss penalty: time to replace a block from lower level, including time
to replace in CPU
 access time: time to lower level

= f(latency to lower level)
 transfer time: time to transfer block

=f(BW between upper & lower levels)

9

4 Questions for Memory Hierarchy

 Q1: Where can a block be placed in the upper
level? (Block placement)

 Q2: How is a block found if it is in the upper level?
 (Block identification)

 Q3: Which block should be replaced on a miss?
(Block replacement)

 Q4: What happens on a write?
(Write strategy)

10

Q1: Where can a block be placed in the upper level?
 Block 12 placed in 8 block cache:

 Fully associative, direct mapped, 2-way set
associative

 S.A. Mapping = Block Number Modulo Number
Sets

 Cache

01234567 0123456701234567

Memory

 1111111111222222222233
01234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

11

Q2: How is a block found if it is in the
upper level?

 Tag on each block
 No need to check index or block offset

 Increasing associativity shrinks index,
expands tag

Block
Offset

Block Address

IndexTag

12

Example

• Suppose we have a 16KB of data in a direct-
mapped cache with 4 word blocks

• Determine the size of the tag, index and offset
fields if we’re using a 32-bit architecture

• Offset
– need to specify correct byte within a block
– block contains 4 words

16 bytes
24 bytes

– need 4 bits to specify correct byte

13

Example [contd…]

• Index: (~index into an “array of blocks”)
– need to specify correct row in cache
– cache contains 16 KB = 214 bytes
– block contains 24 bytes (4 words)
– # rows/cache = # blocks/cache (since

there’s one block/row)
 = bytes/cache
bytes/row =
 214 bytes/cache
 24 bytes/row

 = 210 rows/cache
– need 10 bits to specify this many rows

14

Example [contd…]
• Tag: use remaining bits as tag

– tag length = mem addr length
- offset
- index

 = 32 - 4 - 10 bits
 = 18 bits

– so tag is leftmost 18 bits of memory address

15

Accessing data in cache

• Ex.: 16KB of data, direct-
mapped,
4 word blocks

• Read 4 addresses

–0x00000014,
0x0000001C,
0x00000034, 0x00008014

• Memory values on right:

–only cache/memory level
of hierarchy

Address (hex)
Memory

00000010
00000014
00000018
0000001C

a
b
c
d

... ...
00000030
00000034
00000038
0000003C

e
f
g
h

00008010
00008014
00008018
0000801C

i
j
k
l... ...

... ...

... ...

16

Accessing data in cache
[contd…]
• 4 Addresses:

–0x00000014, 0x0000001C, 0x00000034,
0x00008014

• 4 Addresses divided (for convenience) into
Tag, Index, Byte Offset fields

000000000000000000 0000000001 0100

000000000000000000 0000000001 1100

000000000000000000 0000000011 0100

000000000000000010 0000000001 0100

 Tag Index Offset

17

Example Block

16 KB Direct Mapped Cache, 16B blocks
• Valid bit: determines whether anything is stored in that row

(when computer initially turned on, all entries are invalid)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

Index
0
0
0
0
0
0
0
0

0
0

18

Read 0x00000014 = 0…00 0..001 0100
• 000000000000000000 0000000001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0

19

So we read block 1 (0000000001)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0

20

No valid data

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0

21

So load that data into cache, setting tag, valid

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

22

Read from cache at offset, return word b
• 000000000000000000 0000000001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d
Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

23

Read 0x0000001C = 0…00 0..001 1100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

24

Data valid, tag OK, so read offset return word d

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 1100

Index
0

0
0
0
0
0
0

0
0

25

Read 0x00000034 = 0…00 0..011 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000011 0100

Index
Tag field Index field Offset

0

0
0
0
0
0
0

0
0

26

So read block 3

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000011 0100

Index
Tag field Index field Offset

0

0
0
0
0
0
0

0
0

27

No valid data

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000011 0100

Index
Tag field Index field Offset

0

0
0
0
0
0
0

0
0

28

Load that cache block, return word f

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000011 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0

29

Read 0x00008014 = 0…10 0..001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0

30

So read Cache Block 1, Data is Valid

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0

31

Cache Block 1 Tag does not match (0 != 2)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0

32

Miss, so replace block 1 with new data & tag

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 2 i j k l

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0

33

And return word j

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 2 i j k l

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0

34

Q3: Which block should be
replaced on a miss?

 Easy for Direct Mapped
 Set Associative or Fully Associative:

 Random
 LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

35

Q3: After a cache read miss, if there are no empty
cache blocks, which block should be removed from
the cache?

A randomly chosen block?
Easy to implement, how

well does it work?

The Least Recently
Used (LRU) block?
Appealing,
but hard to implement
for high associativity

Miss Rate for 2-way Set Associative Cache

Also,
try

other
LRU

approx.

Size Random LRU

16 KB 5.7% 5.2%
64 KB 2.0% 1.9%
256 KB 1.17% 1.15%

36

Q4: What happens on a write?
Write-Through Write-Back

Policy

Data written to
cache block

also written to
lower-level

memory

Write data only
to the cache

Update lower
level when a

block falls out of
the cache

Debug Easy Hard
Do read misses
produce writes? No Yes

Do repeated
writes make it to

lower level?
Yes No

Additional option -- let writes to an un-cached
address allocate a new cache line (“write-

allocate”).

37

 Write Buffers for Write-Through Caches

Q. Why a write
buffer ?

Processor
Cache

Write Buffer

Lower
Level

Memory

Holds data awaiting write-through to
lower level memory

A. So CPU doesn’t stall

Q. Why a buffer,
why not just one
register ?

A. Bursts of writes
are
common.Q. Are Read After

Write (RAW)
hazards an issue for
write buffer?

A. Yes! Drain buffer
before next read, or
send read 1st after
check write buffers.

38Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

 When a word is not found in the cache, a miss
occurs:
 Fetch word from lower level in hierarchy, requiring a

higher latency reference
 Lower level may be another cache or the main

memory
 Also fetch the other words contained within the block

 Takes advantage of spatial locality
 Place block into cache in any location within its set,

determined by address
 block address MOD number of sets

Introduc tion

39Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

 n sets => n-way set associative
 Direct-mapped cache => one block per set
 Fully associative => one set

 Writing to cache: two strategies
 Write-through

 Immediately update lower levels of hierarchy
 Write-back

 Only update lower levels of hierarchy when an updated block
is replaced

 Both strategies use write buffer to make writes
asynchronous

Introduc tion

40Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

 Miss rate
 Fraction of cache access that result in a miss

 Causes of misses
 Compulsory

 First reference to a block
 Capacity

 Blocks discarded and later retrieved
 Conflict

 Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache

Introduc tion

41

 Note that speculative and multithreaded
processors may execute other instructions
during a miss
 Reduces performance impact of misses

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
Introduc tion

42Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses
 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

Introduc tion

43Copyright © 2012, Elsevier Inc. All rights reserved.

Ten Advanced Optimizations

 Small and simple first level caches
 Critical timing path:

 addressing tag memory, then
 comparing tags, then
 selecting correct set

 Direct-mapped caches can overlap tag compare and
transmission of data

 Lower associativity reduces power because fewer
cache lines are accessed

A
dvanc ed O

pti m
izatio ns

44Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Access time vs. size and associativity

A
dvanc ed O

pti m
izatio ns

45Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanc ed O

pti m
izatio ns

46Copyright © 2012, Elsevier Inc. All rights reserved.

Way Prediction

 To improve hit time, predict the way to pre-set
mux
 Mis-prediction gives longer hit time
 Prediction accuracy

 > 90% for two-way
 > 80% for four-way
 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s
 Used on ARM Cortex-A8

 Extend to predict block as well
 “Way selection”
 Increases mis-prediction penalty

A
dvanc ed O

pti m
izatio ns

47Copyright © 2012, Elsevier Inc. All rights reserved.

Pipelining Cache

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium: 1 cycle
 Pentium Pro – Pentium III: 2 cycles
 Pentium 4 – Core i7: 4 cycles

 Increases branch mis-prediction penalty
 Makes it easier to increase associativity

A
dvanc ed O

pti m
izatio ns

48Copyright © 2012, Elsevier Inc. All rights reserved.

Nonblocking Caches

 Allow hits before
previous misses
complete

 “Hit under miss”
 “Hit under multiple

miss”
 L2 must support this
 In general,

processors can hide
L1 miss penalty but
not L2 miss penalty

A
dvanc ed O

pti m
izatio ns

49Copyright © 2012, Elsevier Inc. All rights reserved.

Multibanked Caches

 Organize cache as independent banks to
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
dvanc ed O

pti m
izatio ns

50Copyright © 2012, Elsevier Inc. All rights reserved.

Critical Word First, Early Restart

 Critical word first
 Request missed word from memory first
 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order
 Send missed work to the processor as soon as it

arrives

 Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
dvanc ed O

pti m
izatio ns

51Copyright © 2012, Elsevier Inc. All rights reserved.

Merging Write Buffer

 When storing to a block that is already pending in the
write buffer, update write buffer

 Reduces stalls due to full write buffer
 Do not apply to I/O addresses

A
dvanc ed O

pti m
izatio ns

No write
buffering

Write buffering

52

Compiler Optimizations

 McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4B blocks in software

 Instructions
 Reorder procedures in memory so as to reduce conflict misses
 Profiling to look at conflicts (using tools they developed)

 Data
 Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays
 Loop Interchange: change nesting of loops to access data in order stored

in memory
 Loop Fusion: Combine 2 independent loops that have same looping and

some variables overlap
 Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down whole columns or rows

53

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

54

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through memory every 100
words; improved spatial locality

55

Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];
d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; improve spatial
locality

56

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

{r = 0;
 for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};
 x[i][j] = r;
};

 Two Inner Loops:
 Read all NxN elements of z[]
 Read N elements of 1 row of y[] repeatedly
 Write N elements of 1 row of x[]

 Capacity Misses a function of N & Cache Size:
 2N3 + N2 => (assuming no conflict; otherwise …)

 Idea: compute on BxB submatrix that fits in cache

57

Blocking Example

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)
 for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
 for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};
 x[i][j] = x[i][j] + r;
};

 B called Blocking Factor
 Capacity Misses from 2N3 + N2 to 2N3/B +N2

58Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware Prefetching

 Fetch two blocks on miss (include next
sequential block)

A
dvanc ed O

pti m
izatio ns

Pentium 4 Pre-fetching

59Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Prefetching

 Insert prefetch instructions before data is
needed

 Non-faulting: prefetch doesn’t cause
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software
pipelining

A
dvanc ed O

pti m
izatio ns

60Copyright © 2012, Elsevier Inc. All rights reserved.

Summary
A

dvanc ed O
pti m

izatio ns

61Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Technology

 Performance metrics
 Latency is concern of cache
 Bandwidth is concern of multiprocessors and I/O
 Access time

 Time between read request and when desired word
arrives

 Cycle time
 Minimum time between unrelated requests to memory

 DRAM used for main memory, SRAM used
for cache

M
em

ory Techn ology

62Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Technology

 SRAM
 Requires low power to retain bit
 Requires 6 transistors/bit

 DRAM
 Must be re-written after being read
 Must also be periodically refeshed

 Every ~ 8 ms
 Each row can be refreshed simultaneously

 One transistor/bit
 Address lines are multiplexed:

 Upper half of address: row access strobe (RAS)
 Lower half of address: column access strobe (CAS)

M
em

ory Techn ology

63Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Technology

 Amdahl:
 Memory capacity should grow linearly with processor speed
 Unfortunately, memory capacity and speed has not kept

pace with processors

 Some optimizations:
 Multiple accesses to same row
 Synchronous DRAM

 Added clock to DRAM interface
 Burst mode with critical word first

 Wider interfaces
 Double data rate (DDR)
 Multiple banks on each DRAM device

M
em

ory Techn ology

64Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Optimizations
M

em
ory Techn ology

65Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Optimizations
M

em
ory Techn ology

66Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Optimizations

 DDR:
 DDR2

 Lower power (2.5 V -> 1.8 V)
 Higher clock rates (266 MHz, 333 MHz, 400 MHz)

 DDR3
 1.5 V
 800 MHz

 DDR4
 1-1.2 V
 1600 MHz

 GDDR5 is graphics memory based on DDR3

M
em

ory Techn ology

67Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Optimizations

 Graphics memory:
 Achieve 2-5 X bandwidth per DRAM vs. DDR3

 Wider interfaces (32 vs. 16 bit)
 Higher clock rate

 Possible because they are attached via soldering instead of
socketted DIMM modules

 Reducing power in SDRAMs:
 Lower voltage
 Low power mode (ignores clock, continues to

refresh)

M
em

ory Techn ology

68Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Power Consumption
M

em
ory Techn ology

69Copyright © 2012, Elsevier Inc. All rights reserved.

Flash Memory

 Type of EEPROM
 Must be erased (in blocks) before being

overwritten
 Non volatile
 Limited number of write cycles
 Cheaper than SDRAM, more expensive than

disk
 Slower than SRAM, faster than disk

M
em

ory Techn ology

70Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Dependability

 Memory is susceptible to cosmic rays
 Soft errors: dynamic errors

 Detected and fixed by error correcting codes
(ECC)

 Hard errors: permanent errors
 Use sparse rows to replace defective rows

 Chipkill: a RAID-like error recovery technique

M
em

ory Techn ology

71Copyright © 2012, Elsevier Inc. All rights reserved.

Virtual Memory

 Protection via virtual memory
 Keeps processes in their own memory space

 Role of architecture:
 Provide user mode and supervisor mode
 Protect certain aspects of CPU state
 Provide mechanisms for switching between user

mode and supervisor mode
 Provide mechanisms to limit memory accesses
 Provide TLB to translate addresses

V
irtual M

em
ory and V

irtual M
achines

72Copyright © 2012, Elsevier Inc. All rights reserved.

Virtual Machines

 Supports isolation and security
 Sharing a computer among many unrelated users
 Enabled by raw speed of processors, making the

overhead more acceptable

 Allows different ISAs and operating systems to be
presented to user programs

 “System Virtual Machines”
 SVM software is called “virtual machine monitor” or

“hypervisor”
 Individual virtual machines run under the monitor are called

“guest VMs”

V
irtual M

em
ory and V

irtual M
achines

73Copyright © 2012, Elsevier Inc. All rights reserved.

Impact of VMs on Virtual Memory

 Each guest OS maintains its own set of page
tables
 VMM adds a level of memory between physical

and virtual memory called “real memory”
 VMM maintains shadow page table that maps

guest virtual addresses to physical addresses
 Requires VMM to detect guest’s changes to its own page

table
 Occurs naturally if accessing the page table pointer is a

privileged operation

V
irtual M

em
ory and V

irtual M
achines

