Computer Architecture

A Quantitative Approach, Fifth Edition

Chapter 2

COMPUTER
ARCHITECTURE

Memory Hierarchy Design

Introduction

uoIONPOJU|

® Programmers want unlimited amounts of memory with
low latency

" Fast memory technology is more expensive per bit than
slower memory

= Solution: organize memory system into a hierarchy

= Entire addressable memory space available in largest, slowest
memory

= Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

" Temporal and spatial locality insures that nearly all
references can be found in smaller memories

= Gives the allusion of a large, fast memory being presented to the
processor

Memory Hierarchy

uoIONPOJU|

L1 L2 L3
C C C Memory
. = = a bus Memory IO bus [Disk storage
: c c
= = € Disk
memo
Register Level 1 Level 2 Level 3 Memory referen::ye
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2—-4MB 4-16 GB 4-16 TB
Speed: 300ps 1ns 3-10ns 10-20ns 50-100ns 5—-10 ms

(a) Memory hierarchy for server

L1 L2
C c B Memory
CPU a a bus
ﬁ f.
4 . FLASH
Register Level 1 Level 2 Memaory rr;emory
reference Cache Cache reference relerence
reference reference
Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20 ns 50-100ns 25-50us

(b) Memory hierarchy for a personal mobile device

MK

MORGAN KAUFMANN

Memory Performance Gap

uoIONPOJU|

100,000

100,000 - Ty

1, 010 e —

Performance

| I I | |
1980 1985 1990 1995 2000 2005 2010

Year

Memory Hierarchy Design

" Memory hierarchy design becomes more crucial
with recent multi-core processors:

= Aggregate peak bandwidth grows with # cores:
" Intel Core i7 can generate two references per core per clock
= Four cores and 3.2 GHz clock
= 25.6 billion 64-bit data references/second +
= 12.8 billion 128-bit instruction references
= =409.6 GB/s!

= DRAM bandwidth is only 6% of this (25 GB/s)
" Requires:
= Multi-port, pipelined caches

= Two levels of cache per core
= Shared third-level cache on chip

uoIONPOJU|

Performance and Power

uoIONPOIU|

" High-end microprocessors have >10 MB on-chip
cache

= Consumes large amount of area and power budget

Memory Hierarchy: Terminology

= : data appears in some block in the upper level (example: Block X)
= : the fraction of memory access found in the upper level
= . Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
= . data needs to be retrieve from a block in the lower level (Block
Y)
- =1 - (Hit Rate)
= : Time to replace a block in the upper level +

Time to deliver the block the processor
= Hit Time << Miss Penalty (500 instructions on 21264!)

To Processor

From Processor

Upper Level
Memory

Blk X

Lower Level
Memory

BlkY

Cache Measures

m Mt rate: fraction found in that level
= So high that usually talk about Miss rate

= Miss rate fallacy: as MIPS to CPU performance,
miss rate to average memory access time in memory

= Average memory-access time
= Hit time + Miss rate x Miss penalty
(ns or clocks)

= Miss penalty: time to replace a block from lower level, including time
to replace in CPU

® access fime: time to lower level
= f(latency to lower level)
® fransfer time: time to transfer block

=f(BW between upper & lower levels)

4 Questions for Memory Hierarchy

" Q1: Where can a block be placed in the upper
level? (Block placement)

" Q2: How is a block found if it is in the upper level?
(Block identification)

= Q3: Which block should be replaced on a miss?
(Block replacement)

= Q4: What happens on a write?
(Write strategy)

Q1: Where can a block be placed in the upper level?

= Block 12 placed in 8 block cache:

= Fully associative, direct mapped, 2-way set

associative
= S.A. Mapping = Block Number Modulo Number
Sets

Direct Mapped 2-Way Assoc
Full Mapped 15 10d 8= 4 (12 mod 4) = 0

01234567 01234567/ 01234567

Cache

1111111111222222222233
123456789 345067839001 23456783901

Memory

Q2: How is a block found if it is in the
upper level?
" Tag on each block

" No need to check index or block offset

" Increasing associativity shrinks index,
expands tag

Block Address Block
Offset

Tag Index

Example

* Suppose we have a 16KB of data 1n a direct-
mapped cache with 4 word blocks

* Determine the size of the tag, index and offset
fields 1f we’re using a 32-bit architecture

- Offset

- need to specify correct byte within a block

- block contains 4 words
16 bytes
24 bytes

- need to specify correct byte

Example [contd...]

* Index: (~index mnto an “array of blocks™)
- need to specify correct row 1n cache
- cache contains 16 KB = 214 bytes
- block contains 24 bytes (4 words)

- # rows/cache = # blocks/cache (since
there’s one block/row)
= bytes/cache
bytes/row =
2'* bytes/cache
24 bytes/row

= 210 rows/cache

Example [contd...]

*| Tag: use remaining bits as tag

- tag length = mem addr length
- offset
- index
=32-4-10 bits
= 18 bits

- so tag 1s leftmost of memory address

- __Accessing data in cache

Address (hex)

* EX.: 16KB of data, direct- 000 00 010 ‘T
mapped, .
4 word blocks 00000018 >

* Read 4 addresses

—0x00000014, 00000030
0x0000001C, 00000038
0x00000034, 0x00008014 5550003 C -

* Memory values on right: e

00008010
—only cache/memory level
of hierarchy 00008018

Accessing data in cache
T [contd.]
*4 Addresses:

—0x00000014, 0x0000001C, 0x00000034,
0x00008014

*4 Addresses divided (for convenience) into
Tag, Index, Byte Offset fields

000000000000000000 0000000001 0100
000000000000000000 0000000001 1100
000000000000000000 0000000011 0100
000000000000000010 0000000001 0100
Tag Index Offset

16 KB Direct Mapped Cache, 16B blocks

* Valid bit: determines whether anything 1s stored in that row
(when computer 1nitially turned on, all entries are invalid)._

Valid
Index__Tag 0x0-3 0x4-7 Ox8-b Oxc-f

<NSNonOoTkWNDERO

1022 | I I I |

_L_Read 0x00000014 = 0...00 0..001 0100

°*000000000000000000 000000000 0
Tag field ndex |eld1 811“%et
Valid

Tag 0x0-3 O0x4-7 0x8-b Oxc-f
Ing
2
3
4
5
6
7

o :):)::bbblo&_l

1022 | | | | | |
10230l | | I I |

0

__Soweread block 1 (0000000001)

°*0000000Q000Q0000000 0000000001 Q100
Taa field Index field Offset

Tag 0x0-3 0x4-7 0x8-b Oxc-f

5
o vy
(B

Inde

SNoOYOT T WINIFLO
blololololo]o or<

10220 | I I I |

10230l | I I I |

-L_No-valid-data

°*0000000Q000Q0000000 0000000001 Q100
Taa field Index field Offset

O0x4-7 0x8-b Oxc-f

VQ 11\1

IndeXx_

oy
:
o
"
T
W

lolololololalolo

=
o .
N e
=k

S0 load that data into cache, setting tag, valid

°*000000000000000000 000Q000001 Q100
Valid Taq field Index field Offset
all

Index__Ta 0x0-3 0x4-7 0x8-b Oxc-f
0

<SSOk WMNDERO

lololololo]o!

=1
°
°
°

102

10230 I I I I I

—__Read from cache at offset, return word b
* 0000000000Q0000000 0000000001 0100

. Tag field Index fi set
Valid
|ndex_ig 0x0-3 Ox4-7 0x8-b Oxc-f£f
| P —
1 0 - c d
2 [0
3 [0
4 |0
5 [0
6 |0
7 10
10220 I I I I |

10230l | I I I |

-Read 0x0000001C = 0...00 0..001 1100
* 000000000000000000 0000000001 1100

Valid Tag field Index field Offset

all

Index__Tag 0x0-3 0x4-7 0x8-b Oxc-f
0 a b c d

<SSOk WNDERO
loclololojo]od|o

102

=1

IData valid, tag OK, so read offset return word d
* 000000000000000000 0000000001 1100

vald \
Index__Ta 0x0-3 0x4-7 0x8-b Oxc-f

a b

NSO WM O
olololololai=]|o

=1

102

10230 I | | | |

_Read 0x00000034 =0...00 0..011 0100
 000000400404400000 0poLsoasll A,

Valid
Index__Tag 0x0-3 0x4-7 0x8-b Oxc-f

0 a b c d

<SSOk WNDERO
loclololojo]od|o

102

=1

—Soread block 3
. ooooooq_ggofgquooooo 0000000011 Q100

Valid
Inde)l(Tag _ 0x0-3 0x4-7 _0x8-b Oxc-f
0 B |
> Of—U a b G d
3 [0
4 |0
5 |0
6 |O
7 L0
10229 I | | | |

10230 I | | | |

| No valid data
* 00000
oq_%%of%)quooooo 0000000011 Q100
ndex-field- Offset

Valid
Inde)lc_l_gT -
dex; ag_ 0x0 3. 0x4-7 0x8-b Oxc-f
1
L %—O a b
2 c d
4 |0
5 |0
6 |0
7 10
102

=1

102309 I I
I I

. Toad that cache block, return word f

*000000Q00000Q00000 0D0O00HOL 0
Valid OI'gg field Mt

Index__Ta 0x0-3 0x4-7 0x8-b Oxc-f
N — -

s BT b c d
e e

5 |o

6 |0

7 L0

10229 I | | | |

10230 I I I I I

_I_Read 0x00008014 =0...10 0..001 0100
-ooooooq_ggofgquooom 0000000001 Q100

Valid
Index__Ta 0x0-3 0x4-7 0x8-b Oxc-f

a b c d

!

e f g h

<SSO bdWMNERO
=] [=] [=] [=} = [=} " [=)

102209 I | | |

10230 I | | |

. Soread Cache Block 1, Data 1s Valid
-ooooooq_ggfpbqgooom 0000000001 100

V?.Lu
Index__Tag 0x0-3 0x4-7 0x8-b Oxc-f
0 a b c d
0 e f g h

SO UTRWNIRO
=) [=)[=][=} "V [=}! "N [=

102

=1

_L_Cache Block 1 Tag does not match (0 !=2)
00010 0009000001 9400

0x0-3 Ox4-7 0x8-b Oxc-f

b c d
f g h

Miss, so replace block 1 with new data & tag

°*000000000000000010 0000000001 0100
Valid Tag field Index field Offset

Index_ 0x0-3 0x4-7 0x8-b Oxc-f
: i k |
e f g h

gt

<SSO bdWMNERO
=] [=] [=] [=} = [=} " [=)

102209 I I I I |

10230 I I I I I

___And return word j

‘OOOOOOOOOOOOOOOOIO 0000000001 0100
Valid Tag-ficia Index fi set

Index_ 0x0-3 0x4-7“ 0x8-b Oxc-f

|
e f g h

L.ng

<SSO bdWMNERO
=] [=] [=] [=} = [=} " [=)

102209 I | | | |

10230 I | | | |

Q3: Which block should be
replaced on a miss?

= Easy for Direct Mapped

= Set Associative or Fully Associative:
= Random
" | RU (Least Recently Used)

Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16KB 52% 5.7% 4.7% 53% 44% 5.0%
64KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: After a cache read miss, if there are no empty
1_cache blocks, which block should be removed from

the cache?

The Least Recently A randomly chosen block?
Used (LRU) block? Easy to implement, how
Appealing, well does it work?

but hard to implement
for high associativity o
Miss Rate for 2-way Set Associative Cache

Size Random LRU Also,
16 KB 5.7% 5.2% tlfry
64KB | 2.0% | 1.9% “LRU

256 KB 1.17% 1.15% approx.

Q4: What happens on a write?
Write-Through Write-Back

Data written to V‘{Q‘fhﬂaégc%@"

cache block

Policy also written to | Update lower
lower-level ol Ie\((elg vl\ihen ? ‘
OCK 1AllsS out o
memory the cache
Debug Easy Hard
Do read misses No Yes

produce writes?

Do repeated
writes make it to Yes No
lower level?

Additional option -- let writes to an un-cached
address allocate a new cache line (“write-

Write Buffers for Write-Through Caches

Processor Level

\ .| Memory

—

S rite Buffer

Holds data awaiting write-through to
lower level memory

Q. Why a write A. So CPU doesn’t stall
Bu%ﬁ; a buffer, A. Bursts of writes
why not just one are

edisteRead After ARoMasbMrain buffer
Write (RAW) before next read, or

hazards an issue for send read 1st after

Memory Hierarchy Basics

" \WWhen a word is not found in the cache, a miss
OCCUrS:

= Fetch word from lower level in hierarchy, requiring a
higher latency reference

= Lower level may be another cache or the main
memory

= Also fetch the other words contained within the block

uoIONPOJU|

" Takes advantage of spatial locality

= Place block into cache in any location within its set,
determined by address
* block address MOD number of sets

Memory Hierarchy Basics

" n sets => n-way set associative
= Direct-mapped cache => one block per set
= Fully associative => one set

uoIONPOJU|

" Writing to cache: two strategies
= Whrite-through

* Immediately update lower levels of hierarchy

» Write-back

= Only update lower levels of hierarchy when an updated block
Is replaced

= Both strategies use write buffer to make writes
asynchronous

Memory Hierarchy Basics

® Miss rate
®" Fraction of cache access that result in a miss

uoIONPOJU|

= Causes of misses
= Compulsory
= First reference to a block
= Capacity
" Blocks discarded and later retrieved
= Conflict

= Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache

Memory Hierarchy Basics

Misses Miss rate X Memory accesses Miss rate x Memory accesses
Instruction Instruction count . Instruction

Average memory access time = Hit time + Miss rate X Miss penalty

" Note that speculative and multithreaded
processors may execute other instructions
during a miss

=" Reduces performance impact of misses

uoIONPOJU|

Memory Hierarchy Basics

= Six basic cache optimizations:

= Larger block size
= Reduces compulsory misses
" Increases capacity and conflict misses, increases miss penalty

= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption

= Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption

= Higher number of cache levels
* Reduces overall memory access time

= Giving priority to read misses over writes
* Reduces miss penalty

Avoiding address translation in cache indexing
* Reduces hit time

uoIONPOJU|

Ten Advanced Optimizations

= Small and simple first level caches
= Critical timing path:

" addressing tag memory, then
" comparing tags, then
" selecting correct set

= Direct-mapped caches can overlap tag compare and
transmission of data

suoneziwndQ paoueApy

= | ower associativity reduces power because fewer
cache lines are accessed

Access time in picrosecornds

800

700 1

600

500

400 +

300

200 1

100

L1 Size and Associativity

900

m 1-way o 2-way
m 4-way m 8-way

16 KB 32KB 64 KB 128 KB 256 KB
Cache size

Access time vs. size and associativity

suoneziwndo paosueApy

L1 Size and Associativity

0.5

W 1-way O 2-way
M 4-way O 8-way

0.45

_C.‘r
=%
]

z
suoneziwndQ paoueApy

o
(0]
1

0.25

o
ho

Energy per read in nano joules
o
—
(%)

]
-

0.05

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Energy per read vs. size and associativity

Way Prediction

" To improve hit time, predict the way to pre-set
MuxXx
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way

= > 80% for four-way
" |-cache has better accuracy than D-cache

" First used on MIPS R10000 in mid-90s
" Used on ARM Cortex-A8
" Extend to predict block as well

= “Way selection”
" Increases mis-prediction penalty

suoneziwndQ paoueApy

Pipelining Cache

" Pipeline cache access to improve bandwidth

= Examples:
" Pentium: 1 cycle
" Pentium Pro — Pentium lll: 2 cycles
= Pentium 4 — Core i7: 4 cycles

suoneziwndQ paoueApy

" |ncreases branch mis-prediction penalty
" Makes it easier to increase associativity

Nonblocking Caches

= Allow hits before —
previ ouUS misses 90% e Mg —A— Hit-under-2-misses |

—@— Hit-under-64-misses

com p|ete BO% e e B

suoneziwndo paosueApy

[| “Hit under mlss” z 0 O . /R RSRSSRSNS. 1 W ORI
= “Hit under multiple Rl By N e
miss” g 50% | B)
" |2 must support this 3 et fom g

" In general,
processors can hide 2 |
L1 miss penalty but R

not L2 miss penalty REY YR mE Y e

Multibanked Caches

= QOrganize cache as independent banks to
support simultaneous access

= ARM Cortex-A8 supports 1-4 banks for L2
" Intel i7 supports 4 banks for L1 and 8 banks for L2

" |nterleave banks according to block address

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

suoneziwndo paosueApy

Critical Word First, Early Restart

= Critical word first
" Request missed word from memory first
= Send it to the processor as soon as it arrives

" Early restart
= Request words in normal order

= Send missed work to the processor as soon as it
arrives

suoneziwndo paosueApy

= Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

Merging Write Buffer

" When storing to a block that is already pending in the
write buffer, update write buffer

" Reduces stalls due to full write buffer
®= Do not apply to I/O addresses

Write address v v v
100 1 | Mem[100] | 0 0 0
108 1 | Mem[108] | 0 0 0 NO W”te
116 1 | Mem[116] | O V] 0 .
124 1 | Mem[124] | o 0 0 bUﬁerI ng

Write address V v vV v
100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] | 1 | Mem[124]
0 0 0 0 . .
)))) Write buffering
0 0 0 0

suoneziwndo paosueApy

Compiler Optimizations

= McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4B blocks in sofiware

= |nstructions
= Reorder procedures in memory so as to reduce conflict misses
= Profiling to look at conflicts (using tools they developed)
= Data
= Merging Arrays: improve spatial locality by single array of compound
elements vs. 2 arrays

= | oop Interchange: change nesting of loops to access data in order stored
in memory

= [oop Fusion: Combine 2 independent loops that have same looping and
some variables overlap

= Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;

int key;
i

struct merge merged array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

_ Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

x[1][3] = 2 * x[111[3];

/* After */

for (k = 0; k < 100; k = k+1)
for (i = 0; 1 < 5000; i = 1i+1)
for (1. = 0; 7 <100; 9 = 3+1)

x\%j] =2 * x[1][3]1;

Sequential accesses instead of striding through memory every 100
words; improved spatial locality

Loop Fusion Example

/* Before */
for (i = 0; 1 < N; 1 = 1i+1)

0; 3 < N; 3 = j+1)
= 1/b[1i][3] * ;
for (1 = 0; 1 < N; 1 = 14+1)

for (3 0; 3 <N; 3 = J+1)

dli] [J] = _t ;
/* After */
for (i = 0; 1 < N; 1 = 1i+1)

for (3 = 0; 73 < N; 7 = 73+1)

1] 1[a1l * clail1ld1>~

= alill3] + cl[il[dl:}

for (3

2 misses per access to a & ¢ vs. one miss per access; improve spatial
locality

Blocking Example

/* Before */
for (1 = 0; 1 < N; 1 = i+1)
for (= 0; 7 < N; jJ = j+1)

I
" Two Inner Loops: —
= Read all NxN elements of z]]

= Read N elements of 1 row of y[] repeatedly

= Write N elements of 1 row of X[] 1
= Capacity Misses a function of N & Cache Size:

= 2N3+ N2 => (assuming no conflict; otherwise ...)
= |dea: compute on BxB submatrix that fits in cache

Blocking Example

/* After */
for (= 0; < N; = +B)
for (kk = 0; kk < N; kk = kk+B)

for (. = 0; 1i < N; 1 = 1i+1)
for (] = ; < min(] +B-1,N); = 1+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r=1r + yli]lkl*z[k][1];}7
x[2107] = x[210°] + x;

b

® B called Blocking Factor
= Capacity Misses from 2Ns + N2 to 2N3/B +Nz2

Hardware Prefetching

" Fetch two blocks on miss (include next
sequential block)

suoneziwndo paosueApy

2.20
2.00 - i 1.97
= i
E 1.80 i
g - :
e H
E- i
‘o 1.60
2 ; 1.49
g 1.45 |
5 1401 i - 1.40
@ 1 -
o ; 1.26 -
i 1.20 1.21
1204 1.16 i 1.18 I I I I
1.m _J T :I I T T T T T T T T
gap mef fam3d wupwise galgel facerec swim applu lucas mgrid equake
SPECint2000 SPEC{p2000

Pentium 4 Pre-fetching

Compiler Prefetching

" |nsert prefetch instructions before data is
needed

" Non-faulting: prefetch doesn’t cause
exceptions

suoneziwndQ paoueApy

" Register prefetch
= | oads data into register

® Cache prefetch
" | oads data into cache

= Combine with loop unrolling and software
pipelining

sSummary

suoneziwndo paosueApy

Hit Band- Miss Miss Power Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple + - + 0 Trivial; widely used

caches

Way-predicting caches + + 1 Used in Pentium 4

Pipelined cache access - 1 Widely used

Nonblocking caches + + 3 Widely used

Banked caches + + 1 Used in L2 of both i7 and
Cortex-AS8

Critical word first + 2 Widely used

and early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to + 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled + + 3 Needs nonblocking cache;

prefetching possible instruction overhead;
in many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, — means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.

MK

MORGAN KAUFMANN

Memory Technology

" Performance metrics
= [atency is concern of cache
= Bandwidth is concern of multiprocessors and 1/O

= Access time

= Time between read request and when desired word
arrives

= Cycle time
" Minimum time between unrelated requests to memory

ABojouyosa| Aloway

= DRAM used for main memory, SRAM used
for cache

Memory Technology
= SRAM

= Requires low power to retain bit
" Requires 6 transistors/bit

ABojouyosa| Aloway

" DRAM

" Must be re-written after being read

" Must also be periodically refeshed
"= Every ~8 ms
= Each row can be refreshed simultaneously

" One transistor/bit
= Address lines are multiplexed:

= Upper half of address: row access strobe (RAS)
= Lower half of address: column access strobe (CAS)

Memory Technology

" Amdahil:

= Memory capacity should grow linearly with processor speed

= Unfortunately, memory capacity and speed has not kept
pace with processors

ABojouyosa| Aloway

= Some optimizations:

= Multiple accesses to same row

= Synchronous DRAM
= Added clock to DRAM interface
= Burst mode with critical word first

Wider interfaces
Double data rate (DDR)
Multiple banks on each DRAM device

Memory Optimizations

Row access strobe (RAS)

ABojouyos | Alowas|n

Slowest Fastest Column access strobe (CAS)/ Cycle
Production year Chipsize DRAMType DRAM(ns) DRAM (ns) data transfer time (ns) time (ns)
1980 64K bit DRAM 180 150 75 250
1983 256K bit DRAM 150 120 50 220
1986 IM bit DRAM 120 100 25 190
1989 4M bit DRAM 100 30 20 165
1992 16M bit DRAM 80 60 15 120
1996 64M bit SDRAM 70 50 12 110
1998 128M bit SDRAM 70 50 10 100
2000 256M bit DDR1 65 45 7 90
2002 512M bit DDR1 60 40 5 80
2004 1G bit DDR2 35 35 5 70
2006 2G bit DDR2 50 30 2.5 60
2010 4G bit DDR3 36 28 1 37
2012 8G bit DDR3 30 24 0.5 31

Figure 2.13 Times of fast and slow DRAMs vary with each generation. (Cycle time is defined on page 95.) Perfor-
mance improvement of row access time is about 5% per year. The improvement by a factor of 2 in column access in
1986 accompanied the switch from NMOS DRAMs to CMOS DRAMs. The introduction of various burst transfer
modes in the mid-1990s and SDRAM:s in the late 1990s has significantly complicated the calculation of access time
for blocks of data; we discuss this later in this section when we talk about SDRAM access time and power. The DDR4
designs are due for introduction in mid- to late 2012. We discuss these various forms of DRAMs in the next few pages.

MK

MORGAN KAUFMANN

Memory Optimizations

Standard Clock rate (MHz) M transfers per second DRAM name MB/sec /DIMM DIMM name

ABojouyos | Alowas|n

DDR 133 2606 DDR266 2128 PC2100
DDR 150 300 DDR300 2400 PC2400
DDR 200 400 DDR400 3200 PC3200
DDR2 2606 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 3336 PC5300
DDR2 400 800 DDR.2-800 6400 PC6400
DDR3 533 1066 DDR3-1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664 PC10700
DDR3 800 1600 DDR3-1600 12,800 PC12800
DDR4 1066-1600 2133-3200 DDR4-3200 17.056-25,600 PC25600

Figure 2.14 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2010. Note the numerical relation-
ship between the columns. The third column is twice the second, and the fourth uses the number from the third col-
umn in the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this
number is used in the name of the DIMM. Although not shown in this figure, DDRs also specify latency in clock cycles
as four numbers, which are specified by the DDR standard. For example, DDR3-2000 CL 9 has latencies of 9-9-9-28.
What does this mean? With a 1 ns clock (clock cycle is one-half the transfer rate), this indicate 9 ns for row to columns
address (RAS time), 9 ns for column access to data (CAS time), and a minimum read time of 28 ns. Closing the row
takes 9 ns for precharge but happens only when the reads from that row are finished. In burst mode, transfers occur
on every clock on both edges, when the first RAS and CAS times have elapsed. Furthermore, the precharge in not
needed until the entire row is read. DDR4 will be produced in 2012 and is expected to reach clock rates of 1600 MHz
in 2014, when DDR5 is expected to take over. The exercises explore these details further.

MK

MORGAN KAUFMANN

Memory Optimizations

" DDR:

= DDR2
= Lower power (2.5V ->1.8YV)
= Higher clock rates (266 MHz, 333 MHz, 400 MHz)

= DDR3
=15V
= 800 MHz
= DDR4
" 112V
" 1600 MHz

ABojouyosa| Aloway

= GDDRS5 is graphics memory based on DDR3

Memory Optimizations

= Graphics memory:

= Achieve 2-5 X bandwidth per DRAM vs. DDR3
= Wider interfaces (32 vs. 16 bit)

" Higher clock rate

= Possible because they are attached via soldering instead of
socketted DIMM modules

" Reducing power in SDRAMs:
= Lower voltage

= L ow power mode (ignores clock, continues to
refresh)

ABojouyosa| Aloway

Power in mW

600 -

500 ~
400 -

300 -
200 -

100 ~

Memory Power Consumption

B Read, write, terminate
power

O Activate power
B Background power

Low
power
mode

Typical
usage

Fully
active

ABojouyosa| Aloway

Flash Memory

= Type of EEPROM

" Must be erased (in blocks) before being
overwritten

= Non volatile
= | imited number of write cycles

® Cheaper than SDRAM, more expensive than
disk

ABojouyosa| Aloway

= Slower than SRAM, faster than disk

Memory Dependability

" Memory is susceptible to cosmic rays

= Soft errors. dynamic errors

= Detected and fixed by error correcting codes
(ECC)

" Hard errors. permanent errors
= Use sparse rows to replace defective rows

ABojouyosa| Aloway

= Chipkill: a RAID-like error recovery technique

Virtual Memory

" Protection via virtual memory
= Keeps processes in their own memory space

® Role of architecture:

" Provide user mode and supervisor mode
" Protect certain aspects of CPU state

" Provide mechanisms for switching between user
mode and supervisor mode

" Provide mechanisms to limit memory accesses
" Provide TLB to translate addresses

SauIyoe\ [enuiA pue Alows|y [enlip

Virtual Machines

= Supports isolation and security
= Sharing a computer among many unrelated users

= Enabled by raw speed of processors, making the
overhead more acceptable

= Allows different ISAs and operating systems to be
presented to user programs
= “System Virtual Machines”

= SVM software is called “virtual machine monitor” or
“hypervisor”

® |ndividual virtual machines run under the monitor are called
“‘guest VMs”

SauIyoe\ [enuiA pue Alows|y [enlip

Impact of VMs on Virtual Memory

= Each guest OS maintains its own set of page
tables

= VMM adds a level of memory between physical
and virtual memory called “real memory”

= VMM maintains shadow page table that maps

guest virtual addresses to physical addresses

" Requires VMM to detect guest’'s changes to its own page
table

SauIyoe\ [enuiA pue Alows|y [enlip

= Occurs naturally if accessing the page table pointer is a
privileged operation

