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Introduction

 Programmers want unlimited amounts of memory with 
low latency

 Fast memory technology is more expensive per bit than 
slower memory

 Solution:  organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest 

memory
 Incrementally smaller and faster memories, each containing a 

subset of the memory below it, proceed in steps up toward the 
processor

 Temporal and spatial locality insures that nearly all 
references can be found in smaller memories

 Gives the allusion of a large, fast memory being presented to the 
processor

Introduc tion
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Memory Hierarchy
Introduc tion
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Memory Performance Gap
Introduc tion
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Memory Hierarchy Design

 Memory hierarchy design becomes more crucial 
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock
 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +
 12.8 billion 128-bit instruction references
 = 409.6 GB/s!

 DRAM bandwidth is only 6% of this (25 GB/s)
 Requires:

 Multi-port, pipelined caches
 Two levels of cache per core
 Shared third-level cache on chip

Introduc tion
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Performance and Power

 High-end microprocessors have >10 MB on-chip 
cache
 Consumes large amount of area and power budget

Introduc tion
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Memory Hierarchy: Terminology
 Hit: data appears in some block in the upper level (example: Block X) 

 Hit Rate: the fraction of memory access found in the upper level
 Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
 Miss: data needs to be retrieve from a block in the lower level (Block 

Y)
 Miss Rate  = 1 - (Hit Rate)
 Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor
 Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y



8

Cache Measures
 Hit rate: fraction found in that level

 So high that usually talk about Miss rate
 Miss rate fallacy: as MIPS to CPU performance, 

miss rate to average memory access time in memory 
 Average memory-access time 

= Hit time + Miss rate x Miss penalty 
(ns or clocks)

 Miss penalty: time to replace a block from lower level, including time 
to replace in CPU
 access time: time to lower level 

= f(latency to lower level)
 transfer time: time to transfer block 

=f(BW between upper & lower levels)
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4 Questions for Memory Hierarchy

 Q1: Where can a block be placed in the upper 
level? (Block placement)

 Q2: How is a block found if it is in the upper level?
 (Block identification)

 Q3: Which block should be replaced on a miss? 
(Block replacement)

 Q4: What happens on a write? 
(Write strategy)
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Q1: Where can a block be placed in the upper level? 
 Block 12 placed in 8 block cache:

 Fully associative, direct mapped, 2-way set 
associative

 S.A. Mapping = Block Number Modulo Number 
Sets

 Cache

01234567 0123456701234567

Memory

          1111111111222222222233
01234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0
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Q2: How is a block found if it is in the 
upper level?

 Tag on each block
 No need to check index or block offset

 Increasing associativity shrinks index, 
expands tag

Block
Offset

Block Address

IndexTag
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Example

• Suppose we have a 16KB of data in a direct-
mapped cache with 4 word blocks

• Determine the size of the tag, index and offset 
fields if we’re using a 32-bit architecture

• Offset
– need to specify correct byte within a block
– block contains 4 words

16 bytes
24 bytes

– need 4 bits to specify correct byte
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Example [contd…]

• Index: (~index into  an “array of blocks”)
– need to specify correct row in cache
– cache contains 16 KB = 214 bytes
– block contains 24 bytes (4 words)
– # rows/cache = # blocks/cache (since 

there’s one block/row)
   = bytes/cache
bytes/row    =
 214 bytes/cache
 24 bytes/row

   = 210 rows/cache
– need 10 bits to specify this many rows
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Example [contd…]
• Tag: use remaining bits as tag

– tag length = mem addr length 
- offset
- index

             = 32 - 4 - 10 bits
       = 18 bits

– so tag is leftmost 18 bits of memory address
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Accessing data in cache

• Ex.: 16KB of data, direct-
mapped, 
4 word blocks

• Read 4 addresses

–0x00000014, 
0x0000001C, 
0x00000034, 0x00008014

• Memory values on right:

–only cache/memory level 
of hierarchy 

Address (hex)
Memory

00000010
00000014
00000018
0000001C

a
b
c
d

... ...
00000030
00000034
00000038
0000003C

e
f
g
h

00008010
00008014
00008018
0000801C

i
j
k
l... ...

... ...

... ...
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Accessing data in cache 
[contd…]
• 4 Addresses:

–0x00000014, 0x0000001C, 0x00000034, 
0x00008014

• 4 Addresses divided (for convenience) into 
Tag, Index, Byte Offset fields

000000000000000000 0000000001 0100

000000000000000000 0000000001 1100

000000000000000000 0000000011 0100

000000000000000010 0000000001 0100

      Tag                             Index       Offset
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Example Block

16 KB Direct Mapped Cache, 16B blocks
• Valid bit: determines whether anything is stored in that row 

(when computer initially turned on, all entries are invalid) 

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

Index
0
0
0
0
0
0
0
0

0
0
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Read 0x00000014 = 0…00 0..001 0100
• 000000000000000000 0000000001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0
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So we read block 1 (0000000001)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0
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No valid data

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0
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So load that data into cache, setting tag, valid

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0
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Read from cache at offset, return word b
• 000000000000000000 0000000001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d
Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0
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Read 0x0000001C = 0…00 0..001 1100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0
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Data valid, tag OK, so read offset return word d

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 1100

Index
0

0
0
0
0
0
0

0
0



25

Read 0x00000034 = 0…00 0..011 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000011 0100

Index
Tag field Index field Offset

0

0
0
0
0
0
0

0
0
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So read block 3

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000011 0100

Index
Tag field Index field Offset

0

0
0
0
0
0
0

0
0
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No valid data

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000011 0100

Index
Tag field Index field Offset

0

0
0
0
0
0
0

0
0
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Load that cache block, return word f

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000011 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0
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Read 0x00008014 = 0…10 0..001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0
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So read Cache Block 1, Data is Valid

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0
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Cache Block 1 Tag does not match (0 != 2)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0
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Miss, so replace block 1 with new data & tag

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 2 i j k l

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0
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And return word j

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 2 i j k l

• 000000000000000010 0000000001 0100

1 0 e f g h

Index
Tag field Index field Offset

0

0

0
0
0
0

0
0
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Q3: Which block should be 
replaced on a miss?

 Easy for Direct Mapped
 Set Associative or Fully Associative:

 Random
 LRU (Least Recently Used)

Assoc:       2-way      4-way         8-way

Size        LRU     Ran    LRU     Ran      LRU     Ran

16 KB 5.2% 5.7%   4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0%   1.5% 1.7%   1.4% 1.5%

256 KB 1.15% 1.17%  1.13%  1.13%  1.12%   1.12%
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Q3: After a cache read miss, if there are no empty 
cache blocks, which block should be removed from 
the cache?

A randomly chosen block?
Easy to implement, how 

well does it work?

The Least Recently 
Used (LRU) block? 
Appealing,
but hard to implement 
for high associativity

Miss Rate for 2-way Set Associative Cache

Also,
try

other
LRU

approx.

Size Random LRU

16 KB 5.7% 5.2%
64 KB 2.0% 1.9%
256 KB 1.17% 1.15%
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Q4: What happens on a write?
Write-Through Write-Back

Policy

Data written to 
cache block

also written to 
lower-level 

memory

Write data only 
to the cache

Update lower 
level when a 

block falls out of 
the cache

Debug Easy Hard
Do read misses 
produce writes? No Yes

Do repeated 
writes make it to 

lower level?
Yes No

Additional option -- let writes to an un-cached 
address allocate a new cache line (“write-

allocate”). 
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   Write Buffers for Write-Through Caches

Q. Why a write 
buffer ? 

Processor
Cache

Write Buffer

Lower 
Level 

Memory

Holds data awaiting write-through to 
lower level memory

A. So CPU doesn’t stall 

Q. Why a buffer, 
why not just one 
register ?

A. Bursts of writes 
are
common.Q. Are Read After 

Write (RAW) 
hazards an issue for 
write buffer?

A. Yes!  Drain buffer 
before next read, or 
send read 1st after 
check write buffers.
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Memory Hierarchy Basics

 When a word is not found in the cache, a miss 
occurs:
 Fetch word from lower level in hierarchy, requiring a 

higher latency reference
 Lower level may be another cache or the main 

memory
 Also fetch the other words contained within the block

 Takes advantage of spatial locality
 Place block into cache in any location within its set, 

determined by address
 block address MOD number of sets

Introduc tion
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Memory Hierarchy Basics

 n sets => n-way set associative
 Direct-mapped cache => one block per set
 Fully associative => one set

 Writing to cache:  two strategies
 Write-through

 Immediately update lower levels of hierarchy
 Write-back

 Only update lower levels of hierarchy when an updated block 
is replaced

 Both strategies use write buffer to make writes 
asynchronous

Introduc tion
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Memory Hierarchy Basics

 Miss rate
 Fraction of cache access that result in a miss

 Causes of misses
 Compulsory

 First reference to a block
 Capacity

 Blocks discarded and later retrieved
 Conflict

 Program makes repeated references to multiple addresses 
from different blocks that map to the same location in the 
cache

Introduc tion
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 Note that speculative and multithreaded 
processors may execute other instructions 
during a miss
 Reduces performance impact of misses

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
Introduc tion
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Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses
 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

Introduc tion
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Ten Advanced Optimizations

 Small and simple first level caches
 Critical timing path:

 addressing tag memory, then
 comparing tags, then
 selecting correct set

 Direct-mapped caches can overlap tag compare and 
transmission of data

 Lower associativity reduces power because fewer 
cache lines are accessed

A
dvanc ed O

pti m
izatio ns
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L1 Size and Associativity

Access time vs. size and associativity

A
dvanc ed O

pti m
izatio ns
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L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanc ed O

pti m
izatio ns
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Way Prediction

 To improve hit time, predict the way to pre-set 
mux
 Mis-prediction gives longer hit time
 Prediction accuracy

 > 90% for two-way
 > 80% for four-way
 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s
 Used on ARM Cortex-A8

 Extend to predict block as well
 “Way selection”
 Increases mis-prediction penalty

A
dvanc ed O

pti m
izatio ns
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Pipelining Cache

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium:  1 cycle
 Pentium Pro – Pentium III:  2 cycles
 Pentium 4 – Core i7:  4 cycles

 Increases branch mis-prediction penalty
 Makes it easier to increase associativity

A
dvanc ed O

pti m
izatio ns
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Nonblocking Caches

 Allow hits before 
previous misses 
complete

 “Hit under miss”
 “Hit under multiple 

miss”
 L2 must support this
 In general, 

processors can hide 
L1 miss penalty but 
not L2 miss penalty

A
dvanc ed O

pti m
izatio ns
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Multibanked Caches

 Organize cache as independent banks to 
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
dvanc ed O

pti m
izatio ns
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Critical Word First, Early Restart

 Critical word first
 Request missed word from memory first
 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order
 Send missed work to the processor as soon as it 

arrives

 Effectiveness of these strategies depends on 
block size and likelihood of another access to 
the portion of the block that has not yet been 
fetched

A
dvanc ed O

pti m
izatio ns
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Merging Write Buffer

 When storing to a block that is already pending in the 
write buffer, update write buffer

 Reduces stalls due to full write buffer
 Do not apply to I/O addresses

A
dvanc ed O

pti m
izatio ns

No write 
buffering

Write buffering
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Compiler Optimizations

 McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4B blocks in software

 Instructions
 Reorder procedures in memory so as to reduce conflict misses
 Profiling to look at conflicts (using tools they developed)

 Data
 Merging Arrays: improve spatial locality by single array of compound 

elements vs. 2 arrays
 Loop Interchange: change nesting of loops to access data in order stored 

in memory
 Loop Fusion: Combine 2 independent loops that have same looping and 

some variables overlap
 Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows
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Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality
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Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through memory every 100 
words; improved spatial locality
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Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];
d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; improve spatial 
locality
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Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

{r = 0;
 for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};
 x[i][j] = r;
};

 Two Inner Loops:
 Read all NxN elements of z[]
 Read N elements of 1 row of y[] repeatedly
 Write N elements of 1 row  of x[]

 Capacity Misses a function of N & Cache Size:
 2N3 + N2 => (assuming no conflict; otherwise …)

 Idea: compute on BxB submatrix that fits in cache
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Blocking Example

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)
 for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
 for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};
 x[i][j] = x[i][j] + r;
};

 B called Blocking Factor
 Capacity Misses from 2N3 + N2 to 2N3/B +N2
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Hardware Prefetching

 Fetch two blocks on miss (include next 
sequential block)

A
dvanc ed O

pti m
izatio ns

Pentium 4 Pre-fetching
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Compiler Prefetching

 Insert prefetch instructions before data is 
needed

 Non-faulting:  prefetch doesn’t cause 
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software 
pipelining

A
dvanc ed O

pti m
izatio ns
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Summary
A

dvanc ed O
pti m

izatio ns
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Memory Technology

 Performance metrics
 Latency is concern of cache
 Bandwidth is concern of multiprocessors and I/O
 Access time

 Time between read request and when desired word 
arrives

 Cycle time
 Minimum time between unrelated requests to memory

 DRAM used for main memory, SRAM used 
for cache

M
em

ory  Techn ology
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Memory Technology

 SRAM
 Requires low power to retain bit
 Requires 6 transistors/bit

 DRAM
 Must be re-written after being read
 Must also be periodically refeshed

 Every ~ 8 ms
 Each row can be refreshed simultaneously

 One transistor/bit
 Address lines are multiplexed:

 Upper half of address:  row access strobe (RAS)
 Lower half of address:  column access strobe (CAS)

M
em

ory  Techn ology
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Memory Technology

 Amdahl:
 Memory capacity should grow linearly with processor speed
 Unfortunately, memory capacity and speed has not kept 

pace with processors

 Some optimizations:
 Multiple accesses to same row
 Synchronous DRAM

 Added clock to DRAM interface
 Burst mode with critical word first

 Wider interfaces
 Double data rate (DDR)
 Multiple banks on each DRAM device

M
em

ory  Techn ology
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Memory Optimizations
M

em
ory  Techn ology
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Memory Optimizations
M

em
ory  Techn ology
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Memory Optimizations

 DDR:
 DDR2

 Lower power (2.5 V -> 1.8 V)
 Higher clock rates (266 MHz, 333 MHz, 400 MHz)

 DDR3
 1.5 V
 800 MHz

 DDR4
 1-1.2 V
 1600 MHz

 GDDR5 is graphics memory based on DDR3

M
em

ory  Techn ology
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Memory Optimizations

 Graphics memory:
 Achieve 2-5 X bandwidth per DRAM vs. DDR3

 Wider interfaces (32 vs. 16 bit)
 Higher clock rate

 Possible because they are attached via soldering instead of 
socketted DIMM modules

 Reducing power in SDRAMs:
 Lower voltage
 Low power mode (ignores clock, continues to 

refresh)

M
em

ory  Techn ology
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Memory Power Consumption
M

em
ory  Techn ology
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Flash Memory

 Type of EEPROM
 Must be erased (in blocks) before being 

overwritten
 Non volatile
 Limited number of write cycles
 Cheaper than SDRAM, more expensive than 

disk
 Slower than SRAM, faster than disk

M
em

ory  Techn ology
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Memory Dependability

 Memory is susceptible to cosmic rays
 Soft errors:  dynamic errors

 Detected and fixed by error correcting codes 
(ECC)

 Hard errors:  permanent errors
 Use sparse rows to replace defective rows

 Chipkill:  a RAID-like error recovery technique

M
em

ory  Techn ology
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Virtual Memory

 Protection via virtual memory
 Keeps processes in their own memory space

 Role of architecture:
 Provide user mode and supervisor mode
 Protect certain aspects of CPU state
 Provide mechanisms for switching between user 

mode and supervisor mode
 Provide mechanisms to limit memory accesses
 Provide TLB to translate addresses

V
irtual M

em
ory  and V

irtual M
achines
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Virtual Machines

 Supports isolation and security
 Sharing a computer among many unrelated users
 Enabled by raw speed of processors, making the 

overhead more acceptable

 Allows different ISAs and operating systems to be 
presented to user programs

 “System Virtual Machines”
 SVM software is called “virtual machine monitor” or 

“hypervisor”
 Individual virtual machines run under the monitor are called 

“guest VMs”

V
irtual M

em
ory  and V

irtual M
achines
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Impact of VMs on Virtual Memory

 Each guest OS maintains its own set of page 
tables
 VMM adds a level of memory between physical 

and virtual memory called “real memory”
 VMM maintains shadow page table that maps 

guest virtual addresses to physical addresses
 Requires VMM to detect guest’s changes to its own page 

table
 Occurs naturally if accessing the page table pointer is a 

privileged operation

V
irtual M

em
ory  and V

irtual M
achines


