
A Reversible Processor Architecture and Its

Reversible Logic Design

Michael Kirkedal Thomsen, Holger Bock Axelsen, and Robert Glück

DIKU, Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen, Denmark

{shapper,funkstar}@diku.dk, glueck@acm.org

Abstract. We describe the design of a purely reversible computing ar-
chitecture, Bob, and its instruction set, BobISA. The special features
of the design include a simple, yet expressive, locally-invertible instruc-
tion set, and fully reversible control logic and address calculation. We
have designed an architecture with an ISA that is expressive enough to
serve as the target for a compiler from a high-level structured reversible
programming language.

All-in-all, this paper demonstrates that the design of a complete re-
versible computing architecture is possible and can serve as the core of
a programmable reversible computing system.

1 Introduction

Energy consumption is an important aspect of most computing systems today
and this is especially true for embedded systems and battery-dependent comput-
ers. Reversible computing has the potential to reduce power consumption and
heat dissipation [11, 14].

The design of reversible computing systems and programs is, however, not
a trivial extension of the conventional case. Not all problems have simple re-
versible implementations and rethinking the entire problem might be needed for
a solution. Reversible programming languages [15, 28] have special constructs
(e.g. an if-then-else statement also needs a joining assertion that verifies the
computational path) which complicates program development, and the need for
new programming methodologies is evident.

There are, however, specific domains that are clear-cut for reversible comput-
ing: lossless discrete transformations like FFT and wavelets [10] used in com-
pression and analysis of multimedia signals, or simulation of physical systems.
Developments in areas from low-level circuit design [9] and synthesis [16, 19, 25]
to high-level languages such as Janus [27,28] and compilers [1] have also provided
more insight to the design of reversible systems.

Fully reversible computing systems1 are still years of development away from
general purpose computers. In this paper we show the design of a simple re-

1 A first outline of this fully reversible (both abstract machine and implementation)
architecture was presented in Thomsen, Glück, Axelsen, Towards Designing a Re-
versible Processor Architecture, work-in-progress, at the 1st Workshop on Reversible
Computation, 2009 in York.

A. De Vos and R. Wille (Eds.): RC 2011, LNCS 7165, pp. 30–42, 2012.
c� Springer-Verlag Berlin Heidelberg 2012



A Reversible Processor Architecture and Its Reversible Logic Design 31

versible computing architecture for a reversible implementation of a Harvard
architecture, Sect. 2. The architecture has a small instruction set but is still
powerful enough to be Turing-complete in a reversible sense [3] and expressive
enough to be the target for a compiler [1] from the high-level language Janus,
Sect. 3.

The low-level implementation of Bob is designed with elementary reversible
logic gates [5, 13] resulting in a robust technology-independent design, Sect. 4.
It makes use of an extended version of the latest design of reversible arithmetic
logic units [21], Sect. 4.1, and has a novel control structure that simplifies the ad-
dress calculation compared to previous approaches [12,24], Sect. 4.2. As memory
in reversible hardware is still an open question, we shall assume memory that
is operationally reversible, such that the design is independent of any actual fu-
ture memory implementation, regardless of whether this is based on conventional
volatile memory [6] or reversible models like the rotary element [17]. For verifica-
tion we implemented the design in Verilog. The programming was self-restricted
to uphold the conventions of reversible logic design, Sect. 4.3.

2 The Problem of Control

In this section we describe the control logic used in our Harvard architecture,
and the reasoning behind it.

In a conventional processor architecture, the address of the next instruction
to be executed is often found by overwriting the program counter with a static
address. As a result, the information about the old program counter is erased.
If this is the case, then we do not know how to make a backwards step, i.e. ir-
reversibility.

A solution to this problem could be to use the Landauer embedding [14] and
generate a trace of all previous program counters. This approach, suggested by
Cezzar [7], is not satisfactory. The trace, which would be as long as the number
of executed instructions, is not part of the program’s desired result and is an
extremely wasteful use of memory. A processor which accumulates more and
more garbage in this fashion is not practical.

Instead of using only a single register for program control (the program
counter), we shall use an approach developed for the reversible von Neumann
architecture Pendulum [12,24] as formalized in [4], where the address calculation
of the reversible abstract machine relies on three special-purpose registers:

– program counter (pc): points at the current instruction in memory,
– branch register (br): contains information about the offset from the current

to the next instruction, and
– direction bit (dir): specifies the current direction of execution; either FALSE

(forward) or TRUE (backward).

The calculation of the next program counter (pc) now only depends on the
branch register (br) and the direction bit (dir). If the value of the branch register
is zero, then the execution will continue to the next instruction by adding 1



32 M.K. Thomsen, H.B. Axelsen, and R. Glück

program

registersdirbrpc

processorcontrol flow
data
memory memory

Fig. 1. The reversible Harvard architecture

to (or subtracting 1 from) the program counter, depending on the execution
direction given by the direction bit. If the branch register contains a non-zero
value then this is added to (or subtracted from) the program counter. In both
cases the program counter is reversibly updated, and the branch register and
direction bit are preserved. We therefore have enough information to do the
inverse calculation to determine the previous instruction, i.e. reversibility.

Figure 1 shows the abstract reversible Harvard architecture. While a von
Neumann architecture has only one memory containing both the program and
data, they are separated in a Harvard architecture. This separation simplifies
the reversible model by ensuring that a memory instruction cannot update its
own instruction cell, which would lead to irreversibility.

3 A Simple Instruction Set Architecture, BobISA

The choice of the instruction set influences not only the expressiveness of the
assembly language, but also the costs of the underlying hardware realization. A
larger instruction set with many complex operations can increase the expressive-
ness and reduce code size, but will also result in higher costs in terms of gates,
logic depth, ancillae, and so forth. We require that the reversible instruction
set is r-Turing complete [3]; meaning that it can implement an interpreter for
reversible Turing Machines without the use of a history, or other garbage [2].
Furthermore, all instructions are required to be reversible updates [4] and locally
invertible. The rest of this section describes the 17 instructions of BobISA, di-
vided into three types: arithmetic/logic instructions, branch instructions, and
memory instructions.

3.1 Arithmetic-Logic Instructions

Table 1 shows the set of reversible arithmetic/logic instructions. It includes addi-
tion (ADD and ADD1), subtraction (SUB and SUB1), negation (NEG), and exclusive-
or (XOR and XORI); the immediate instruction, XORI, computes exclusive-or with
a given constant value. These are the basic instructions included in our reversible
ALU design [21]. To ensure reversibility we use modular arithmetic.

Conventional processors typically allow multiplication and division by 2, im-
plemented as left or right shifts. These are irreversible operations (e.g. the divi-
sion by 2 deletes the least significant bit), so to circumvent this, left and right
roll operations could be used instead. Here, we propose a novel solution with



A Reversible Processor Architecture and Its Reversible Logic Design 33

Table 1. Arithmetic-logic instructions, their inverses and effect on registers R

i Inv(i) Effect(i)

ADD regd regs SUB R(regd) ← R(regd) +n R(regs)
SUB regd regs ADD R(regd) ← R(regd)−n R(regs)
ADD1 regd SUB1 R(regd) ← R(regd) +n 1
SUB1 regd ADD1 R(regd) ← R(regd)−n 1
NEG regd NEG R(regd) ← 0−n R(regd)
XOR regd regs XOR R(regd) ← R(regd)⊕R(regs)
XORI regd imm XORI R(regd) ← R(regd)⊕ imm
MUL2 regd DIV2 R(regd) ← mul2n(R(regd))
DIV2 regd MUL2 R(regd) ← div2n(R(regd))

10 2 3 4 5 6 7-1-2-3-4-5-6-7-8

10 2 3 4 5 6 7-1-2-3-4-5-6-7-8

MUL2
DIV 2

Fig. 2. Example of division (DIV2) and multiplication (MUL2) by 2 with 4-bit two’s
complement numbers. The solid blue lines show the inputs that are well defined.

a division/multiplication by 2 that conserves the sign of the two’s complement
numbers, but only returns the division or multiplication by 2 if the input is well-
defined. For division, only the even numbers return the input value divided by
2, and multiplication only returns the input value multiplied by 2 if the input
is small enough for it to double without overflow. The rest of the input values
we map to values such that reversibility and local invertibility is assured and
the instructions are easy to implement in logic. For a more intuitive description,
Fig. 2 shows the mapping for 4-bit two’s-complement numbers.

The multiplication/division operations are formally defined as

mul2n(x) =

⎧
⎪⎨
⎪⎩

x · 2 if −2n−2 ≤ x < 2n−2,

x · 2− 2n + 1 if x ≥ 2n−2,

x · 2 + 2n + 1 if x < −2n−2,

(1)

and

div2n(x) =

⎧
⎪⎨
⎪⎩

x/2 if x is even,
x−1
2 + 2n−1 if x is odd, and x > 0,

x−1
2 − 2n−1 if x is odd, and x < 0,

(2)

where n is the number of bits used in the representation of x.



34 M.K. Thomsen, H.B. Axelsen, and R. Glück

A general restriction in reversible programming languages is that a register
(or variable) must only be updated with a source value does not come from the
register itself. (E.g. a ← a − a is not allowed.) A violation of this will result in
information destruction. The standard way of resolving this is by checking that
the destination register regd and (second) source register regs are syntactically
different. This check is simple at high abstraction levels, but implementing it
at the logic level results in a large overhead. Also, if this check fails the whole
program execution fails; it is hard at the logic circuit level to define the meaning
of a failing architecture execution.

Instead, our solution is to slightly alter the memory model of the registers.
When register regd is read, its value is swapped with 0. Now, if regs is the same
as regd then the value of regs becomes 0 instead of the original value of regd, and
so the value of register regd will not be destroyed. (E.g. a := a− 0 is calculated
instead of a := a − a.) Writing values back to the register file is done in the
opposite order: first the value of regs is swapped into the register regs, then
afterwards the same for regd. In both writing cases the auxiliary value that is
swapped in/out of the registers is 0.

3.2 Branch Instructions

Branch instructions are needed for control flow in programs. For BobISA, we
have chosen four conditional branch, one unconditional branch, and two special
swap-branch-register instructions for the instruction set (see Table 2).

The four conditional branch instructions were chosen for their simple im-
plementation. Because we use two’s complement numbers, both greater-than-
or-equal-to-zero (BGEZ) and less-than-zero (BLZ) are simple checks of the most
significant bit of the value in regd (FALSE for values greater than or equal to zero
and TRUE if the value is less than zero). The other two conditional instructions
are branches on even (BEVN) and odd (BODD) numbers. These are determined
by a simple check of the least significant bit: a FALSE implies an even number
and a TRUE implies an odd number. For all four instructions, if the branch
condition evaluates to true then the offset (off ) is added to the branch register;
else, the branch register is left unchanged. There is also an unconditional branch
instruction (BRA) that always updates the branch register with the given offset.

In conventional ISAs a jump-and-link instruction is used for procedure calls;
it stores the current program counter in a register as a return address and then
jumps to a given address. We know for Bob that the program counter is only
updated by the branch register, so we can simulate the jump-and-link by load-
ing an offset into the branch register, performing the jump and then have an
instruction at the target address saving the branch register as a return offset.

There are two special instructions to support this: SWB and RSWB. The swap-
branch-register (SWB) will swap the value of a given register with the value of the
branch register. The swap-branch-register-and-reverse (RSWB) will do the same,
and furthermore reverse the execution direction by flipping the direction bit.



A Reversible Processor Architecture and Its Reversible Logic Design 35

This can be used for inverse procedure calls. The use of the RSWB instruction is
novel and was chosen because it simplifies the logic for the pc update significantly,
reducing the gate count and logic depth compared to previous designs [12,24,4].

3.3 Memory Instruction

The usual load/store memory instructions in conventional instruction sets are,
by themselves, irreversible. However, by combining the load and the store in-
structions into a single exchange (EXCH) instruction, the result is a memory
instruction that is reversible and self-inverse (as shown in Table 2), cf. [12, 24].
This takes a register (regd) that contains some value to be exchanged into mem-
ory and a register (rega) that contains the address of the cell in memory that
we want to exchange, as arguments. The value in the register and the value at
the address in the memory are then swapped.

Table 2. Branch and memory instructions, their inverses, and effect on the general
purpose registers R, special purpose registers br and dir, and data memory M

i Inv(i) Effect(i)

BGEZ regd off BGEZ regd −off br ← br +n (R(regd) ≥ 0 ? off : 0)
BLZ regd off BLZ regd −off br ← br +n (R(regd) < 0 ? off : 0)
BEVN regd off BEVN regd −off br ← br +n (even(R(regd)) ? off : 0)
BODD regd off BODD regd −off br ← br +n (odd(R(regd)) ? off : 0)
BRA off BRA −off br ← br +n off
SWB regd SWB regd br ↔ R(regd)
RSWB regd RSWB regd br ↔ R(regd) ; dir ← ¬dir
EXCH regd rega EXCH regd rega R(regd) ↔ M(R(rega))

4 The Architecture of the Reversible Machine, Bob

Based on the ISA above we design an architecture, called Bob, that performs
one instruction within a single clock-cycle. We have chosen a 16-bit architec-
ture, which leads to the following design properties and the defined instruction
encoding shown in Fig. 3.

– Registers - 4 bits for register numbering allows for 16 registers in total, each
with a size of 16 bits. Using two’s complement representation, numbers can
range from −32768 through 32767.

– Memory - We can index 216 words of 16 bits (the maximum size we can load
into the registers). This gives a memory cap of 128 KB.

– Jumps - With an offset length of 8 bits, a branch-jump can not be of more
than 127 lines. However, jumps can be arbitrarily long by the using the SWB
instruction.

– Immediates - With 8 bits, immediate values must range from -128 to 127.



36 M.K. Thomsen, H.B. Axelsen, and R. Glück

bits: 15 12 11 8 7 4 3 0

Arith & mem opcode regd regs arith

Branch & imm opcode regd off /imm

ADD 1 1 0 0 regd regs 0 1 0 0

SUB 1 1 0 0 regd regs 1 1 0 1

ADD1 1 1 0 0 regd 0 0 0 0 0 1 1 0

SUB1 1 1 0 0 regd 0 0 0 0 1 1 1 1

NEG 1 1 0 0 regd 0 0 0 0 0 1 1 1

XOR 1 1 0 0 regd regs 0 0 0 0

XORI 0 0 0 0 regd imm

MUL2 1 0 1 0 regd 0 0 0 0 0 0 0 0

DIV2 1 0 0 1 regd 0 0 0 0 0 0 0 0

EXCH 1 0 0 0 regd rega 0 0 0 0

BGEZ 0 0 1 1 regd off

BLZ 0 0 1 0 regd off

BEVN 0 1 0 1 regd off

BODD 0 1 0 0 regd off

BRA 0 0 0 1 0 0 0 0 off

RSWB 0 1 1 1 regd 0 0 0 0 0 0 0 0

SWB 0 1 1 0 regd 0 0 0 0 0 0 0 0

Fig. 3. Instruction formats and instruction set encoding for Bob

– Register zero - Register 0, reg0 is assumes to always contain the value 0. In-
structions with only one register (NEG, ADD1, etc.) are implemented with
this requirement in mind (e.g. ADD1 regd is implemented as R(regd) ←
R(regd) +n R(reg0) +n 1).2

While it is a primary requirement for us to keep the implementation garbage-
free, we also try to reduce the number of ancillae bits, and keep circuit size at a
minimum. We therefore accept that the delay of sub-circuits (e.g., the ALU and
adders) are linear with respect to the number of input bits, as this lowers the
above costs.

Figure 4 shows a detailed design of the processor, and Table 3 shows the gate
count. Even though it has many similarities with the MIPS R2000 processor [18],
there are some significant differences. Notice, for example, that preserving infor-
mation everywhere implies that the control signals from the control logic unit
can not be deleted, but have to be uncomputed using an inverse control logic
unit. Other significantly different parts are the arithmetic logic unit and the
address calculation logic, which will be described below.

2 Breaking the assumption about register 0 will not break reversibility of the architec-
ture, but only result it a processor that do not behave as expected; e.g. the example
with ADD1.



A Reversible Processor Architecture and Its Reversible Logic Design 37

In
v.

P
C

P
ro

gr
am

U
pd

.
C

ou
nt

.

isZero

Inv. isZero

Mux

Br Chk

Mux

MuxBr Chk

Si
gn

de
c

F
et

ch
In

st
ru

ct
io

n

Si
gn ex

t

A
L

U

B
ra

nc
h

R
eg

.
U

pd
.

M
em

or
y

ex
ch

an
ge

un
it

R
eg

is
te

rs

B
R

D
IR

lo
gi

c

In
v.

In
v.

co
nt

ro
l

C
on

tr
ol

lo
gi

c

D
ir
e
c
ti
o
n

b
it

1
4

7

1
4

8

4

8
8 8

0

In
st
r
[1
1
:8
]

In
st
r
[7
:4
]

In
st
ru

c
ti
o
n

P
ro

g
ra

m
c
o
u
n
te

r

C
r
s
w

b

0

In
st
r
[1
5
:1
2
]

In
st
r
[3
:0
]

C
e
x
c
h

C
A

L
U

C
x
o
r
i

C
s
w

b
r

C
B

r
a
n
c
h

0

D
ir
e
c
ti
o
n

b
it

P
ro

g
ra

m
c
o
u
n
te

r

B
ra

n
c
h

re
g
is
te

r

D
a
ta

s

D
a
ta

d

In
st
r
[7
:0
]

In
st
r
[3
:0
]

In
st
r
[3
:0
]

In
st
r
[7
:4
]

In
st
r
[1
1
:8
]

C
B

r
a
n
c
h

C
x
o
r
i

C
s
w

b
r

C
e
x
c
h

C
A

L
U

C
r
b
r
a

0

In
st
r
[3
:0
]

In
st
r
[1
5
:1
2
]

0

C
r
e
g
s

0
0

0
0

0 0

D
ir
e
c
ti
o
n

b
it

C
A

L
U

C
e
x
c
h

C
B

r
a
n
c
h

C
r
s
w

b

D
ir
e
c
ti
o
n

b
it

P
ro

g
ra

m
c
o
u
n
te

r

B
ra

n
c
h

re
g
is
te

r

O
ff
se

t

D
a
ta

d

D
a
ta

s

C
x
o
r
i

D
o
B
r
a
n
c
h
0

C
A

L
U

C
A

L
U

C
e
x
c
h

C
x
o
r
i0

C
B

r
a
n
c
h

D
a
ta

a
d
d
re

ss

d
a
ta

W
ri
te

d
a
ta

R
e
a
d

N
e
x
t
p
ro

g
ra

m
c
o
u
n
te

r

C
r
b
r
a

0

d
a
ta

d

d
a
ta

s

r
e
g
s

r
e
g
d

Fig. 4. The logic design of the reversible processor. The black dots indicate split and
merge of lines, not fan-out and fan-in. The small blue arrows indicates input and output
control lines. The light blue boxes are memory elements, the brown polygons are the
ALU and other adders, and the small green figures are minor combinational circuits.



38 M.K. Thomsen, H.B. Axelsen, and R. Glück

CAxorB

An−1

P0

B1

P1

Bn−2

Pn−2

Bn−1

Pn−1

B0

CCarryXor

CNegP

CMul2

CDiv2

CCarryIn

CNegA

CCarryXor

CNegP

CMul2

CDiv2

CCarryIn

CNegA

CAxorB

B1

A1

A0

B0

Bn−2

An−2

Bn−1

Fig. 5. Logic design of the extended reversible ALU. The division and multiplication
by 2 are shown (in red boxes) furthest to the left and right, respectably.

4.1 Reversible Arithmetic-Logic Unit, ALU

The Arithmetic Logic Unit (ALU) is a central part of the processor. In a con-
ventional ALU design all possible arithmetic-logic operations are computed in
parallel, and afterwards a multiplexer chooses the desired result; all other re-
sults are discarded. This is not desirable for a reversible circuit because of the
number of resulting garbage bits. An alternative design for reversible ALU has
therefore been suggested by the authors [21]. A key element in this ALU design
is the V-shaped (forward and backward ripple) reversible binary adder designed
by Vedral et al. [23] and later improved in [8, 22, 20].

The ALU design follows a strategy that places all logical operations in se-
quence and then uses controls to ensure that only the desired operation changes
the input values. Of the arithmetic-logic instructions in the proposed instruction
set, only the division and multiplication by 2 are not supported by this ALU de-
sign. Support for these two instructions are added by new forward and backward
ripples at each side of the ALU. The forward ripple (division) first rolls one bit
from the least to the most significant bit and then uses an exclusive-or to ensure
the sign of the two’s complement number. The backward ripple (multiplication)
is the exact inverse operation. See Fig. 5 for the detailed design.

This sequential ALU design is surprisingly efficient: compared to the reversible
ripple-carry adders it has only constant increase in logic depth and a linear
increase in gate count. The cost of the ALU in various metrics can be found in
Table 3.



A Reversible Processor Architecture and Its Reversible Logic Design 39

Table 3. Costs in various metrics of the extended n-bit ALU compared to an optimized
reversible ripple-carry adder and the entire Bob design without memory.

Reversible n-bit Extended Bob architecture
adder [22] n-bit ALU without memory

Gate count total 4n− 2 8n− 4 473
Feynman gates 2n 2n 155
Toffoli gates 0 2n+ 2 146
Fredkin gates 2n− 2 4n− 6 172

Ancillae bits 1 0 39
Logic depth 3n− 1 3n+ 3
Logic width 2n+ 1 2n+ 7

4.2 Address Calculation

The address calculation depends both on the semantics of the overall architecture
and the instruction set: the architecture specifies in which order to update the
special purpose registers (pc, br, dir), while the choice of branch instructions
determines the register updates. Adapting the previously described semantics
for reversible control (Sect. 2), the address calculation in Bob has the following
steps, cf. Fig. 4.

1. Branch check. We check if the current instruction is a branch instruction; in
the case of a conditional branch instruction we also check if the condition is
satisfied. If both evaluate to true, a doBranch signal to update the branch
register is sent.

2. Swapping branch register. Now, we decide what to update. Often, it will be
the value in the branch register, but if the current instruction is a swap-
branch-register instruction (SWB or RSWB), then we must update the value of
the given general purpose register instead. To do this we use a 2:2 reversible
multiplexer (implemented using an array of Fredkin gates), where a control
line decides if the inputs are swapped.

3. Updating the branch register. If doBranch is TRUE then the value of the
branch register is updated with the value of the offset. The offset is added if
the direction bit is FALSE (forward execution), otherwise subtracted if the
direction bit is TRUE (backwards execution), using a simplified ALU.

4. Updating the direction bit. In case of an RSWB instruction we must invert the
direction bit; this is done with a controlled-not gate.

5. Updating the program counter. If the updated branch offset equals 0, then the
program counter is updated with 1 to step one instruction ahead. Otherwise
the program counter is updated with the value of the branch register. Again,
the update is either addition or subtraction depending on the direction bit
and implemented with a simplified ALU.



40 M.K. Thomsen, H.B. Axelsen, and R. Glück

module alu
(input [15:0] A, B
,input C_negA, C_carryIn, C_AxorB, C_carryXor, C_negP, C_div2, C_mul2
,output [15:0] P, B_o
,output C_negA_o, C_carryIn_o, C_AxorB_o, C_carryXor_o, C_negP_o, C_div2_o, C_mul2_o
);
wire [15:0] tmp1, tmp2, tmp3, tmp4, tmp5;

// DIV2
assign tmp1[13:0] = (C_div2 ? A[14:1] : A[13:0]);
assign tmp1[15] = A[15];
assign tmp1[14] = (C_div2 ? A[15] ^ A[0] : A[14]);

// ADD, SUB, NEG, XOR
assign tmp2 = (C_negA ? ~tmp1 : tmp1);
assign tmp3 = (C_carryIn ? tmp2 + 1 : tmp2);
assign tmp4 = (C_carryXor ? tmp3 + B : (C_AxorB ? tmp3 ^ B : tmp3));
assign tmp5 = (C_negP ? ~tmp4 : tmp4);

// MUL2
assign P[14:1] = (C_mul2 ? tmp5[13:0] : tmp5[14:1]);
assign P[15] = tmp5[15];
assign P[0] = (C_mul2 ? tmp5[15] ^ tmp5[14] : tmp5[0]);

endmodule

Fig. 6. Verilog module for the ALU. Assignments to unchanged outwires (denoted by
“wirename o”) have been removed for brevity.

6. Inverse branch check. To perform the address calculation more efficiently
some temporary control values are used, and the final step is to uncompute
these. For this, we use the exact inverse of the branch check, explained in
the first step.

Previous designs [12,24], which use an unconditional-branch-and-reverse instruc-
tion to reverse the execution direction, cf. [4], requires two adders in the update
of the branch register, compared to one adder for our design.

4.3 Verification

To test the correctness of the design, a Verilog program was implemented and
simulated using ModelSim. This language and tool has no built-in support for
reversible circuits, but by imposing the Verilog program with the restriction
of only using reversible updates, this simulation verifies the correctness of the
design. As an example, Fig. 6 shows the implementation of the ALU module.
The entire Bob implementation is about 800 lines of pretty-printed code and uses
20 modules. We will not report on timing and other results from this simulation,
as these do not yield any additional insights into the design of the architecture.

A future implementation using a reversible specification language, such as
SyReC [26], is desirable. The effect on the cost of such an implementation com-
pared to custom design of Bob (see Table 3) is hard to predict and depends on
the abstraction level of the implementation.



A Reversible Processor Architecture and Its Reversible Logic Design 41

5 Conclusion

We have presented the design of a purely reversible computing architecture with
a novel and efficient address calculation and a small, but expressive instruction
set containing 17 locally-invertible instructions.3 The instruction set is r-Turing
complete and well-suited as the target language of a compiler from existing
high-level structured reversible programming languages. The logical design uses
in total only 473 reversible gates (see Table 3), which amounts to 6328 transistors
in the adiabatic dual-line pass-transister technology [9].

This demonstrates that the design of a complete reversible computing ar-
chitecture, as presented in this paper, can serve as the core of a simple pro-
grammable reversible computing system. Even though our reversible computing
architecture does not offer the advanced and sophisticated features of main-
stream general-purpose computers, the simplicity makes our design suited as
part of special-purpose embedded systems that works without user interaction.

Clearly, further work is required both on the hardware side (including the
design and synthesis of reversible circuits with different technologies), as well
as on the software side, for fully reaping the low-power benefits of reversible
computing systems. This is especially true for the implementation or interfacing
of memory.

References

1. Axelsen, H.B.: Clean Translation of an Imperative Reversible Programming Lan-
guage. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer, Hei-
delberg (2011)

2. Axelsen, H.B., Glück, R.: A Simple and Efficient Universal Reversible Turing Ma-
chine. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS,
vol. 6638, pp. 117–128. Springer, Heidelberg (2011)

3. Axelsen, H.B., Glück, R.: What Do Reversible Programs Compute? In: Hofmann,
M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

4. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible Machine Code and Its Abstract
Processor Architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

5. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computa-
tion. Physical Review A 52(5), 3457–3467 (1995)

6. Burignat, S., Thomsen, M.K., Klimczak, M., Olczak, M., De Vos, A.: Interfacing
Reversible Pass-Transistor CMOS Chips with Conventional Restoring CMOS Cir-
cuits. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7156, pp. 113–123.
Springer, Heidelberg (2012)

7. Cezzar, R.: The design of a processor architecture capable of forward and reverse
execution. In: IEEE Proceedings of the SOUTHEASTCON 1991, vol. 2, pp. 885–
890. IEEE (1991)

3 As a historical remark, EDSAC in 1949 had about the same number of irreversible
instructions.



42 M.K. Thomsen, H.B. Axelsen, and R. Glück

8. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-
carry addition circuit. arXiv:quant-ph/0410184v1 (2005)

9. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing and Ap-
plications. Wiley-VCH (2010)

10. De Vos, A., Burignat, S., Thomsen, M.K.: Reversible implementation of a discrete
integer linear transformation. Journal of Multiple-Valued Logic and Soft Comput-
ing 18(1), 25–35 (2012)

11. Feynman, R.P.: Feynman Lectures on Computation. Addison-Wesley (1996)
12. Frank, M.P.: Reversibility for Efficient Computing. Ph.D. thesis, EECS Depart-

ment, Massachusetts Institute of Technology (1999)
13. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical

Physics 21(3-4), 219–253 (1982)
14. Landauer, R.: Irreversibility and heat generation in the computing process. IBM

Journal of Research and Development 5(3), 183–191 (1961)
15. Lutz, C.: Janus: A time-reversible language. A letter to R. Landauer (1986),

http://www.tetsuo.jp/ref/janus.html

16. Maslov, D., Dueck, G., Miller, D.: Synthesis of Fredkin-Toffoli reversible networks.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(6), 765–769
(2005)

17. Morita, K.: A Simple Universal Logic Element and Cellular Automata for Re-
versible Computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS,
vol. 2055, pp. 102–113. Springer, Heidelberg (2001)

18. Patterson, D.A., Hennessy, J.L.: Computer Organization & Design: the hard-
ware/software interface, 2nd edn. Morgan Kaufmann Publishers (1997)

19. Shende, V., Bullock, S., Markov, I.: Synthesis of quantum-logic circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(6),
1000–1010 (2006)

20. Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders.
Parallel Processing Letters 19(1), 205–222 (2009)

21. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for
quantum arithmetic. Journal of Physics A: Mathematical and Theoretical 43(38),
382002 (2010)

22. Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. Interna-
tional Journal of Unconventional Computing 1(4), 339–355 (2005)

23. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic
operations. Physical Review A 54(1), 147–153 (1996)

24. Vieri, C.J.: Reversible Computer Engineering and Architecture. Ph.D. thesis,
EECS Department, Massachusetts Institute of Technology (1999)

25. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer
Science (2010)

26. Wille, R., Offermann, S., Drechsler, R.: SyReC: A programming language for syn-
thesis of reversible circuits. In: Proceedings of the Forum on Specification & Design
Languages, pp. 1–6. IET, Southhampton (2010)

27. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of Computing Frontiers, pp. 43–54. ACM (2008)

28. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Proceedings of Partial Evaluation and Program Manipulation,
pp. 144–153. ACM (2007)


