
Assembly/Machine Language

CPE380, Spring 2024

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Compiling a C Program

1. Compiler generates assembly code
2. Assembler creates binary modules

– Machine code, data, & symbolic info
– Libraries are modules too

3. Linker combines needed modules into one
4. Loader is the part of the OS that loads a

module into memory for execution

• Usually, HLL programmers don't see this;
1-3 invoked by cc, 4 when you run the program

Assembly Language(s)?

• Not one language, but one per ISA
• “Human readable” textual representation

– Typically, one line becomes one instruction
– May also have macros
– Directives control assembly, specify data

• Used to be used for programming... now:
– Used mostly as compiler target
– People use it for debugging, performance

tweaking, or when no other option exists

Which Assembly Language?

• Which assembly language will we use?
– MIPS?
– IA32 or AMD64/Intel64/X86-64?
– ARM?

• We'll start with a simple stack instruction set:
– Close to what most compilers do internally
– Can transform to whichever

• No, the stack instruction set isn't in the text...

Worlds Inside Programs

• Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)

• Code:
– Assignments & expressions
– Control flow
– Functions & subroutines

• Data

• Comments – which we'll ignore :-(

Worlds Inside Programs

• Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)

• Code:
– Assignments & expressions – varies widely
– Control flow – easy, similar in most ISAs
– Functions & subroutines – complex!

• Data – easy, similar in most ISAs

• Comments – which we'll ignore :-(

Control Flow

• Determines sequence/order of operations
(orders can be parallel)

• HLLs have many constructs:
• if-then-else, switch-case, etc.
• while-do, repeat-until, for, etc.
• goto, break, continue

• Most assembly languages just have goto
and conditional goto... so that's what we
must use to implement everything

Compilation / Translation

• Compiler “understands” program and translates
it into a language the machine can execute...?

• Compilation is really based on “compiling” a
bunch of code chunks that represent each part
of your program into the translated constructs

• Compiler optimization isn't really “optimal” –
apply correctness-preserving transformations

• Parallelizing is reordering operations; optimizing
by making various things happen in parallel

Translation Templates

• It's about pattern matching & substitution
– Patterns contain terminals
– Also contain nested patterns (nonterminals)

• General form:

nonterminal: {list of terminals & nonterminals}

{output pattern}

if (expr) stat

• expr and stat are names of other patterns
• Jump over stat if expr is false, create label

{code for expr}
Test
JumpF L
{code for stat}

L:

if (expr) stat1 else stat2

• stat1 and stat2 are just stat
• Jump over stat2 if stat1 was executed

{code for expr}
Test
JumpF L
{code for stat1}
Jump M

L: {code for stat2}
M:

if (expr) stat1 else stat2

• There are two jumps for the then clause...
why not reorder to make that the fast case?

{code for expr}
Test
JumpT L
{code for stat2}
Jump M

L: {code for stat1}
M:

while (expr) stat

• Loop body executes 0 or more times

L: {code for expr}
Test
JumpF M
{code for stat}
Jump L

M:

do stat while (expr);

• Loop body executes 1 or more times
• Code is more efficient than for while loop

L: {code for stat}
{code for expr}
Test
JumpT L

while (expr) stat

• Improve while by using do-like sequence
enclosed in an if

{code for expr}
Test
JumpF M

L: {code for stat}
{code for expr}
Test
JumpT L

M:

while (expr) stat

• Improve while by jumping into loop...
nothing wrong with unstructured code here

Jump M
L: {code for stat}
M: {code for expr}

Test
JumpT L

for (expr1;expr2;expr3) stat

• Really “syntactic sugar” for:

expr1;
while (expr2) {
 stat;
L: expr3;
}

• Only difference is continue goes to L

DO label var=expr1,expr2,expr3

• Fortran DO loops imply lots of stuff, e.g.:
– Is loop counting up or down?
– If var is a real, Fortran requires converting

the index into an integer to avoid roundoff

• Implying more information is just more syntactic
sugar – use a simpler source language pattern
to encode a more complex, but common, target
code sequence

switch (expr) stat

• Not equivalent to a sequence of if statements;
this is C's version of a “computed goto”

• The case labels inside stat are merely labels,
and so is default, which is why there's break

• Depending on case values, compilers code as:
– Linear sequence of if-gotos
– Binary search of if-gotos
– Index a table of goto targets
– Combinations of the above...

Assignments & Expressions

• This is where the computation happens

• Assignment notation was a major advance;
Cobol's add c to b giving a is a=b+c

• Expressions (expr) compute a value

• Assignments associate a value with a name:

name=expr

name=expr ?

• Not really math; it binds a value to a name

• Names (lval) are places that can hold values;
registers or main memory addresses

• Expressions (rval, value) are computed results

• Consider some examples:
a=5 associates value 5 with name a
5=a 5 is not a name
a=b associates a copy of b's value with a

a=5

• Let's generate simple stack code for this...

Push a ;push &a on stack
Push 5 ;push the value 5
Store ;*(&a)=5, remove &a

• but where's the ; at the end?
– C has an assignment operator
– ; simply means discard the value produced

a=5;

Push a ;push &a on stack
Push 5 ;push the value 5
Store ;*(&a)=5, remove &a
Pop ;discard remaining 5

b=(a=5);

• b gets a copy of a's value

Push b ;push &b on stack
Push a ;push &a on stack
Push 5 ;push the value 5
Store ;*(&a)=5, remove &a
Store ;*(&b)=5, remove &b
Pop ;discard remaining 5

b+c

• What does b+c mean – what's added?
It adds rvals to produce an rval result.

• What does b.c mean?
It adds lvals to produce an lval result:
&b + offset_of_field_c

• What does b[c] mean?
It adds lval+rval to produce an lval result:
&(b[0]) + (c * sizeof(b[c]))

• If you know which are lvals and rvals, it's easy...

a=(b+c);

Push a ;push &a on stack
Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Add ;replace b, c with b+c
Store ;a=b+c, remove &a
Pop ;discard remaining b+c

a=(b+c);

Push a ;push &a on stack
Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Add ;replace b, c with b+c
Store ;a=b+c, remove &a
Pop ;discard remaining b+c

if (b+c) stat;

Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Add ;replace b, c with b+c
Test ;tests and pops
JumpF L
{code for stat}

L:

if (b<c) stat;

Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Lt ;replace b, c with b<c
Test ;tests and pops
JumpF L
{code for stat}

L:

a=(b+(5*c));

Push a ;push &a on stack
Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push 5 ;push 5 on stack
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Mul ;5, c becomes 5*c
Add ;b, 5*c becomes b+5*c
Store ;a=b+5*c, remove &a
Pop ;discard b+5*c

a=b[c];

Push a ;push &a on stack
Push b ;push &b on stack
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Push 4 ;push sizeof(b[c])
Mul ;c, 4 becomes c*4
Add ;&b, c*4 becomes &b+c*4
Ind ;&(b[c]) becomes b[c]
Store ;a=b[c], remove &a
Pop ;discard b[c]

Different Models

• Stack code – easy to generate, as you saw…

• General Register code
– 3 operand (MIPS): reg1 = reg2 op reg3
– 2 operand (IA32): reg1 = reg1 op reg3
– accumulator: acc = acc op mem

• Load/Store vs. memory operands:
reg1 = reg1 op mem

• HLL-oriented Memory-to-Memory (IAPX432):
e.g., a[i] = b[j] * c[k]

a=b[c];

Push a ;stack: &a
Push b ;stack: &a, &b
Push c ;stack: &a, &b, &c
Ind ;stack: &a, &b, c
Push 4 ;stack: &a, &b, c, 4
Mul ;stack: &a, &b, c*4
Add ;stack: &a, &(b[c])
Ind ;stack: &a, b[c]
Store ;stack: b[c]
Pop ;stack:

a=b[c];

Push a ;r0=&a
Push b ;r0=&a, r1=&b
Push c ;r0=&a, r1=&b, r2=&c
Ind ;r0=&a, r1=&b, r2=c
Push 4 ;r0=&a, r1=&b, r2=c, r3=4
Mul ;r0=&a, r1=&b, r2=c*4
Add ;r0=&a, r1=&(b[c])
Ind ;r0=&a, r1=b[c]
Store ;r0=b[c]
Pop

a=b[c];

Push a ;r0=&a Li r0,a
Push b ;r1=&b Li r1,b
Push c ;r2=&c Li r2,c
Ind ;r2=c Lw r2,@r2
Push 4 ;r3=4 Li r3,4
Mul ;r2=c*4 Mul r2,r2,r3
Add ;r1=&(b[c]) Add r1,r1,r2
Ind ;r1=b[c] Lw r1,@r1
Store ;r0=b[c] Sw r1,@r0
Pop

Two Vs. Three Operands

• Uses fewer instruction bits...
MIPS three of 32 registers takes 3*5=15 bits;
IA32 two of 8 registers takes 2*3=6 bits

• From stack code, it doesn't cost anything

• With a smart compiler avoiding recomputation
(e.g., via common subexpression elimination),
might need to fake three operands:

Op r1,r2,r3 becomes Mov r1,r2
Op r1,r3

Two Vs. Three Operands

Li r0,a Li r0,a
Li r1,b Li r1,b
Li r2,c Li r2,c
Lw r2,@r2 Lw r2,@r2
Li r3,4 Li r3,4
Mul r2,r2,r3 Mul r2,r3
Add r1,r1,r2 Add r1,r2
Lw r1,@r1 Lw r1,@r1
Sw r1,@r0 Sw r1,@r0

Load/Store Vs. Mem Operands

• Easier to build pipelined implementation if
load/store are the only memory accesses
(as in RISC architectures like MIPS)

• Memory used to be faster and processor
couldn't fit lots of registers...
– Memory operands mean fewer instructions
– Pairs well with two operand forms (IA32)
– Accumulator must allow memory operands

(where else to get second operand?)

Load/Store Vs. Mem Operands

Load/Store 2 Operand Accumulator
with Mem with Mem

Li r0,a
Li r1,b Lw r0,@b Lw @b
Lw r1,@r1
Li r2,c
Lw r2,@r2
Add r1,r1,r2 Add r0,@c Add @c
Sw r1,@r0 Sw r0,@a Sw @a

How Many Registers Needed?

Li r0,a ;1 register
Li r1,b ;2 registers
Li r2,c ;3 registers
Lw r2,@r2 ;3 registers
Li r3,4 ;4 registers
Mul r2,r2,r3 ;4 registers
Add r1,r1,r2 ;3 registers
Lw r1,@r1 ;2 registers
Sw r1,@r0 ;2 registers

Spill/Reload Fakes More

Li r0,a Li r0,a
Li r1,b Li r1,b
Li r2,c Li r2,c
Lw r2,@r2 Lw r2,@r2
Li r3,4 { Spill t0=r0 }

Li r0,4
Mul r2,r2,r3 Mul r2,r2,r0
Add r1,r1,r2 Add r1,r1,r2
Lw r1,@r1 Lw r1,@r1
Sw r1,@r0 { Reload r0=t0 }

Sw r1,@r0

HLL Memory-to-Memory

• Advantages:
– Easier to write complex assembly code

(but we use compilers for that now and this
actually makes the compiler harder to write)

– Can enforce strict typing, software reliability
(but complicates hardware a lot)

– Allows glueless parallel processing by
keeping all program state in memory
(but memory access is s-l-o-w)

• IAPX432 did this... nothing since then

Parallel Machines
• There are two flavors of large-scale parallelism:

– MIMD: different program on each PE
(multi-core processors, clusters, etc.)

– SIMD: same instruction on PE's local data
(GPUs – graphics processing units)

• Each MIMD PE runs a sequential program...
nothing special in code generation

• SIMD machines are different:
– If one PE executes some code, all must
– Can disable a PE that doesn't want to do it

SIMD Code
• There are two flavors of data

– Singular, Scalar: one value all PEs agree on
– Plural, Parallel: value local to each PE

• Assignments and expressions work normally,
except when mixing singular and plural:
– Singular values can be copied to plurals
– Plural values have to be “reduced” to a single

value to treat as singular; for example, using
operators like any or all

• Control flow is complicated by enable masking...

if (expr) stat

• Jump over stat if expr is false for all PEs;
otherwise, do for all the PEs where it's true

PushEn ;save PE enable state
{code for expr}
Test ;test on each PE...
DisableF ;turn off if false
Any ;any PE still enabled?
JumpF L ;any PE must do stat?
{code for stat}

L:PopEn ;restore enable state

if (c < 5) a = b;

• Masking idea can be used in sequential code to
avoid using control flow: if conversion

• The above can be rewritten as:

a = ((c < 5) ? b : a);

• Bitwise AND with -1 can be used to enable,
while AND with 0 disables, thus simply OR:

t = -(c < 5);
a = ((t & b) | ((~t) & a));

while (expr) stat

• Keep doing stat while expr is true for any
PE; once off, PE stays off until while ends

PushEn ;save PE enable state
M: {code for expr}

Test ;test on each PE...
DisableF ;turn myself off if false
Any ;any PE still enabled?
JumpF L ;exit if no PE enabled
{code for stat}
Jump M

L: PopEn ;restore enable state

Functions & Subroutines

• Mixes expressions and control flow…

• Complex!
– Support of recursion
– Lots of stuff that has to happen
– Each ISA does it a little differently... but

specifies it (e.g., as part of the ABI)

• We'll focus on generically what must happen

Simple Subroutine Call/Return

• Jump, but first save return address on stack

sub(); Push L
Jump sub

L: …

sub() { sub:
… …
return; Ret ;PC=pop

}

Simple Subroutine Call/Return

• Jump, but first save return address on stack
• Very common, and L is actually PC value when

executing, so often a special instruction:

Push L Call sub
Jump sub

L: …

Stack Frame

• The return address isn't all we must pass…

• Everything for a particular call is a stack frame:
– Return address
– Return value (for a function)
– Argument values
– Local variables
– Temporaries
– Optionally, a frame pointer (FP)

• Call/return and stack use is specified in ABI

Function Call

• Reserve space for return value first...
• Then push args & remove them on return

a = f(5); Push a
Push 0 ;ret value
Push 5 ;push arg
Call f
Pop ;pop arg
Store
Pop

Function Call

f(int b) { f: Push 16
return(b+1); ASP

} Push 16
ASP
Ind
Push 1
Add
Store
Pop
Ret

Function Call

f: Push 16 ;offset of ret value (0)
ASP ;add stack pointer
Push 16 ;stack offset of b
ASP
Ind ;get rval of b
Push 1 ;add 1
Add
Store ;store into ret value
Pop ;remove extra copy
Ret

Frame Pointer

• Where did the stack offsets come from?

• Subsequent pushing onto stack changes offset!

f: Push 16 ;stack offset of ret value
...
Push 16 ;stack offset of b

• Frame pointer (FP) points at a fixed point in the
stack (saved FP), forming a linked list of frames

Function Call Using FP

• Mark pushes old FP, makes new FP point at it

• Release restores old FP, removes frame

a = f(5); Push a
Push 0 ;ret value
Push 5 ;push arg
Mark
Call f
Release
Pop ;pop arg
Store
Pop

Function Call Using FP

f(int b) { f: Push 4 ;always f
return(b+1); AFP

} Push -4 ;always b
AFP
Ind
Push 1
Add
Store
Pop
Ret

What Is Passed For Args?
• Call by value: copy of rval

– used by most languages (C, Java, etc.)
– considered safest way to pass values

• Call by address or reference: copy of lval
– used by: ForTran, C* reference, Pascal var
– efficiently avoids copying big data structures

• Call by name or thunk: pointer to function
to compute lval as it would have thunk to earlier
– used by: Algol, some Lisp variants
– interesting, but strange and dangerous

Enough Generalization: MIPS!

• We'll be using MIPS throughout this course

• A simple, 32-bit, RISC architecture:
– 32 general registers, 3-register operands
– Strict load/store for memory access
– Every instruction is one 32-bit word
– Memory is byte addressed (4 bytes/word)
– Closely matched to the C langauge

MIPS Registers ($ names)

$zero 0 constant 0
$at 1 reserved for assembler
$v0-$v1 2-3 value results
$a0-$a3 4-7 arguments (not on stack)
$t0-$t9 8-15,24-25 temporaries
$s0-$s7 16-23 save before use
$k0-$k1 26-27 reserved for OS kernel
$gp 28 global pointer (const)
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

MIPS ALU Instructions

• Either 3 reg operands or 2 regs and immediate
16-bit value (sign extended to 32 bits):

add $rd,$rs,$rt #rd=rs+rt
addi $rt,$rs,immed #rt=rs+immed

• Suffix of i means immediate (u for unsigned)

• The usual operations: add, sub, and, or, xor

• Also has set-less-than, slt: rd=(rs<rt)

MIPS Load Immediate

• Can directly load a 16-bit immediate:

addi $rt,$0,imm #rt=0+imm

• For 32-bit, generally use 2 instructions to load
upper 16 bits then OR-in lower 16 bits:

lui $rt,imm #rt=(imm<<16)
ori $rt,$rs,imm #rt=rs|(imm&0xffff)

• MIPS assembler macro does it as li or la:

li $dest,const #dest=const

MIPS Load & Store

• Can access a memory location given by a
register plus a 16-bit Immediate offset:

lw $rt,off($rs) #rt=memory[rs+off]
sw $rt,off($rs) #memory[rs+off]=rt

• Byte and halfword using b and h instead of w

MIPS Jumps

• MIPS has a jump instruction, j:

j address #PC=address

• Call saves return address in $ra: jal addr
• Return is jump register using jr $ra
• Limited range (26 bits) for j or jal;

can do full 32-bit target using jump register:

la $t0,address #t0=address
jr $t0 #PC=t0

MIPS Branches

• MIPS has only conditional branches:

beq $rs,$rt,lab #if rs==rt, PC=lab
bne $rs,$rt,lab #if rs!=rt, PC=lab

• The target is encoded as a 16-bit immediate:

immediate = (lab-(PC+4))>>2

• Branch over jump to target distant address

MIPS Comparisons

• Truth in C is “non-0,” so compare to $0

• Equality comparison can use xor or sub

• Inequality comparisons all use slt:

$t0=$t1<$t2 slt $t0,$t1,$t2

$t0=$t1>=$t2 ! $t0=$t1<$t2

$t0=$t1>$t2 slt $t0,$t2,$t1

$t0=$t1<=$t2 ! $t0=$t1>$t2

MIPS Assembler Notation

• One assembly directive or instruction per line

• # means to end of line is a comment

• Labels look like they do in C, followed by a :

• Directives generally start with a .
.data #the following is static data
.text #the following is code
.globl name #name is what C calls extern
.word value #initialize a word to value
.ascii “abc” #initialize bytes to 97,98,99
.asciiz “abc” #initialize bytes to 97,98,99,0

Summary

• There are many different assembly languages,
but there are many similarities

• ISA specifies instructions (ABI for conventions)

• MIPS is a very straightforward RISC made for C

• You don't need to write lots of assembly code
– tweak code output by a compiler
– write little wrappers for what compiler can't do

MIPS References & Tools

• Reference materials:
– The course website
– The textbook
– MIPS cc -S

• Simulator we prefer is SPIM, WWW version:
 http://garage.ece.engr.uky.edu:10043/cgi-bin/cgispim.cgi

• There’s even a little C-subset compiler:

 http://garage.ece.engr.uky.edu:10043/cgi-big/mucky.cgi

http://garage.ece.engr.uky.edu:10043/cgi-bin/cgispim.cgi
http://garage.ece.engr.uky.edu:10043/cgi-big/mucky.cgi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

