Assembly/Machine Language

CPE380, Spring 2024

Hank Dietz

http://aggregate.org/hankd/

q:gz University of
Kentucky

http://aggregate.org/hankd

Compiling a C Program

. Compiler generates assembly code

. Assembler creates binary modules

— Machine code, data, & symbolic info

— Libraries are modules too

. Linker combines needed modules into one
. Loader is the part of the OS that loads a
module into memory for execution

Usually, HLL programmers don't see this;
1-3 invoked by cc, 4 when you run the program

Assembly Language(s)?

* Not one language, but one per ISA

* "Human readable” textual representation
— Typically, one line becomes one instruction
- May also have macros
— Directives control assembly, specify data

* Used to be used for programming... now:
- Used mostly as compiler target
— People use it for debugging, performance
tweaking, or when no other option exists

Which Assembly Language?

* Which assembly language will we use?
- MIPS?
— |A32 or AMD64/Intel64/X86-647
- ARM?

* We'll start with a simple stack instruction set:
— Close to what most compilers do internally
— Can transform to whichever

* No, the

Worlds Inside Programs

Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)

Code:

— Assignments & expressions
— Control flow

— Functions & subroutines

Data

Comments — which we'll ignore :-(

Worlds Inside Programs

Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)

Code:

— Assignments & expressions -

— Control flow - easy, similar in most ISAs
— Functions & subroutines -

Data - easy, similar in most ISAs

Comments — which we'll ignore :-(

Control Flow

* Determines sequence/order of operations
(orders can be parallel)

 HLLs have many constructs:
* if-then—-else, switch—-case, etC.
* while-do, repeat—until, for, elC.
* goto, break, continue

* Most assembly languages just have goto
and conditional goto... so that's what we
must use to implement everything

Compilation / Translation

Compilation is really based on “compiling” a
bunch of code chunks that represent each part
of your program into the translated constructs

Compiler optimization isn't really “optimal” -
apply correctness-preserving transformations

Parallelizing is reordering operations; optimizing
by making various things happen in parallel

Translation Templates

* |t's about pattern matching & substitution

— Patterns contain terminals
— Also contain nested patterns (nonterminals)

e General form:

nonterminal: {list of terminals & nonterminals}

{output pattern}

1f (expr) stat

* expr and stat are names of other patterns
* Jump over stat if expris false, create label

{code for expr}
Test

JumpF L

{code for stat}

i1f (expr) statl else stat2

* statland stat2 arejust stat
 Jump over stat2if statl1 was executed

{code for expr}
Test
JumpF L
{code for statl}
Jump M
L.: {code for statl2}
M:

1f (expr) statl else statZ2

* There are two jumps for the then clause...
why not reorder to make that the fast case?

{code for expr}
Test
JumpT L
{code for statl2}
Jump M
L.: {code for statl}
M:

while (expr) stat

* Loop body executes 0 or more times

L: {code for expr}
Test
JumpF M
{code for stat}
Jump L

M:

do stat while (expr),;

* Loop body executes 1 or more times
* Code is more efficient than for while loop

L: {code for stat}
{code for expr}
Test
JumpT L

while (expr) stat

* |Improve while by using do-like sequence
enclosed in an if

{code for expr}
Test
JumpF M

LL: {code for stat}
{code for expr}
Test
JumpT L

M:

while (expr) stat

* |Improve while by jumping into loop...
nothing wrong with unstructured code here

Jump M
L: {code for stat}
M: {code for expr}
Test
JumpT L

for (exprl; expr2; expr3) stat

* Really “syntactic sugar” for:

exprl,

while (expr2) {
stat;

L: expr3,

}

* Only difference is continue goes to L

DO label var=exprl, expr2, expr3

Fortran DO loops imply lots of stuff, e.qg.:

— |Is loop counting up or down?

- If varis a real, Fortran requires converting
the index into an integer to avoid roundoff

Implying more information is just more syntactic
sugar — use a simpler source language pattern
to encode a more complex, but common, target
code sequence

switch (expr) stat

Not equivalent to a sequence of if statements;
this is C's version of a “computed goto”

The case labels inside stat are merely labels,
and so is default, which is why there's break

Depending on case values, compilers code as:
— Linear sequence of if-gotos

— Binary search of if—gotos

— Index a table of goto targets

— Combinations of the above...

Assignments & Expressions

This is where the computation happens

Assignment notation was a major advance;
Cobol's add ¢ to b giving ais a=b+c

Expressions (expr) compute a value

Assignments associate a value with a name:

name=expr

name=expr ?

Not really math; it binds a value to a name

Names (lval) are places that can hold values;
registers or main memory addresses

Expressions (rval, value) are computed results

Consider some examples:
a=5 associates value 5 with name a
5 1S hot a hame
a=b associates a copy of b's value with a

a=5

* Let's generate simple stack code for this...

Push a ; push &a on stack
Push 5 ;push the value 5
Store ; *(&a) =5, remove &a

* but where's the ; at the end?
— C has an assignment operator
— ; simply means discard the value produced

=5;

Push a ;push &a on stack
Push 5 ;push the value 5
Store ; *(&a) =5, remove &a
Pop ;discard remaining 5

b= (a=5) ;

* b gets a copy of a's value

Push b ;push &b on stack
Push a ;push &a on stack
Push 5 ;push the value 5
Store ; *(&a) =5, remove &a
Store ; *(&b) =5, remove &b
Pop ;discard remaining 5

b+c

What does b+c mean - what's added?
It adds rvals to produce an rval result.

What does b.c mean?
It adds lvals to produce an lval result:
&b + offset_of field c

What does b[c] mean?
It adds lval+rval to produce an lval result:
&§(b[0]) + (c * sizeof(b[c]))

If you know which are Ivals and rvals, it's easy...

a= (b+c) ;

Push a ;push &a on stack
Push b ;push &b on stack

Ind ; replace &b with * (&b)
Push c ;push &c on stack
Ind ; replace &c with *(&c)
Add ;replace b, ¢ with b+c
Store ; a=b+c, remove &a

Pop ;discard remaining b+c

a= (b+c) ;

Push a ; push &a on stack
Push b ;push &b on stack

Ind ;replace &b with * (&b)
Push c ;push &c on stack
Ind ; replace &c with *(&c)
Add ;replace b, ¢ with b+c
Store ; a=b+c, remove &a

Pop ;discard remaining b+c

1f (b+c) stat;
Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ; replace &c with *(&c)
Add ; replace b, ¢ with b+c
Test ;tests and pops
JumpF L

{code for stat}

1f (b<ec) stat;
Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ; replace &c with *(&c)
Lt ;replace b, ¢ with b<c
Test ;tests and pops
JumpF L

{code for stat}

Push
Push
Ind
Push
Push
Ind
Mul
y:Velol
Store
Pop

a=(b+(5*c)) ;

nu Oo

; push &a on stack

; push &b on stack
;replace &b with * (&b)
; push 5 on stack

; push &c on stack

; replace &c with *(&c)
7O, C becomes b*c

;b, o0*c becomes bt+5*c
;a=b+ob*c, remove &a
;discard b+5*c

as=b[c];

Push a ;push &a on stack

Push b ;push &b on stack

Push c¢ ;push &c on stack

Ind ;replace &c with * (&c)
Push 4 ;push sizeof(blc])

Mul ; ¢, 4 becomes c*4

Add ; &b, c*4 becomes &b+c*4
Ind ;& (b[c]) becomes bc]
Store ;a=b[c], remove &a

Pop ;discard blc]

Different Models

Stack code — easy to generate, as you saw...

General Register code

- 3 operand (MIPS): regl = reg2 op reg3
- 2 operand (IA32): regl = regl op reg3
— accumulator: acc = acc op mem

Load/Store vs. memory operands:
regl = regl op mem

HLL-oriented Memory-to-Memory (IAPX432):
eg9.,al 1] =b[j] *c[k]

Push
Push
Push
Ind
Push
Mul
y:Velol
Ind
Store
Pop

QoW

as=b[c];

; stack:
; stack:
; stack:
; stack:
; stack:
; stack:
; stack:
; stack:
; stack:
; stack:

&a,
&a,
&a,
&a,
&a,
&a,
&a,
blc]

&

&b, &c
&b, ¢
&b, c,
&b, c*4
& (blc])
bl[c]

as=b[c];

Push a ; rO0=&a

Push Db ; vr0=&a, rl=&b

Push c ; rO0=&a, rl=&b, r2=&c

Ind ;r0=&a, rl=&b, r2=c

Push 4 ; rO0=&a, rl=&b, r2=c, r3=4
Mul ; r0=&a, rl=&b, r2=c*4
Add ; r0=&a, rl=&(b[c])

Ind ; r0=8&a, rl=b[c]

Store ; rO0=b[c]

Pop

as=b[c];

Push a ; r0=&a Li r0,a
Push b ; r1=8&D Li rl,b
Push c¢ ; r2=6&C Li r2,c

Ind ; r2=C Lw r2,(Qr2
Push 4 ; r3=4 Li r3,4

Mul ; r2=c*4 Mul r2,r2,r3
Add ;r1=&(b[c]) Add rl,rl,r2
Ind ;rl=b[c] ILw rl,@rl
Store ; rO0=b[c] Sw rl, @QrO

Pop

Two Vs. Three Operands

e Uses fewer instruction bits...

MIPS three of 32 registers takes 3*5=15 bits;
IA32 two of 8 registers takes 2*3=6 bits

* From stack code, it doesn't cost anything

* With a smart compiler avoiding recomputation
(e.g., via common subexpression elimination),
might need to fake three operands:

Op rl,r2,r3 becomes Mov rl,r2
Op rl1,r3

Two Vs. Three Operands

Li r0, a Li 0, a
Li rl,b Li rl,b
Li r2,c Li r2,c
Lw r2,dr2 Lw r2,dr2
Li r3,4 Li r3,4
Mul r2,r2,r3 Mul r2,r3
Add rl,rl,r2 Add rl,r2
Lw rl,@rl ILw rl,@rl

Sw rl,@xO Sw rl,@rO

Load/Store Vs. Mem Operands

* Easier to build pipelined implementation if
load/store are the only memory accesses
(as in RISC architectures like MIPS)

* Memory used to be faster and processor
couldn't fit lots of registers...
- Memory operands mean fewer instructions
— Pairs well with two operand forms (1A32)
— Accumulator must allow memory operands
(where else to get second operand?)

Load/Store Vs. Mem Operands

Load/Store 2 Operand Accumulator
with Mem with Mem

Li 0, a

Li rl,b Lw r0, @b Lw @b
ILw rl,@rl

Li r2,c

Lw r2,dr2

Add rl,rl,r2 Add r0,@c Add (c
Sw rl, @O Sw r0, Qa Sw (da

How Many Registers Needed?

Li r0,a ;1 register
Li rl,b ; 2 reglsters
Li r2,c ; 3 reglsters
Lw r2,dr2 ; 3 reglsters
Li r3,4 ;

Mul r2,r2,r3 ;

Add rl,rl,xr2 ; 3 registers
Lw rl,@rl ; 2 reglsters
Sw rl,@xO ; 2 reglisters

Spill/Reload Fakes More

Li r0,a
Li rl,b
Li r2,c
ILw r2,@r2
Li 3,4

Mul r2,r2,r3
Add rl,rl, r2
ILw rl,@rl
Sw rl,@QrO

Li r0,a

Li rl,b

Li r2,c

Lw r2,@r2

{ Spill t0=x0 }
Li 0,4

Mul r2,r2,r0
Add rl,rl, r2

ILw rl,@rl

{ Reload r0=t0 }
Sw rl,@QrO

HLL Memory-to-Memory

* Advantages:

— Easier to write complex assembly code
(but we use compilers for that now and this
actually makes the compiler harder to write)

— Can enforce strict typing, software reliability
(but complicates hardware a lot)

— Allows glueless parallel processing by
keeping all program state in memory
(but memory access is s-l1-o-w)

* |APX432 did this... nothing since then

Parallel Machines

* There are two flavors of large-scale parallelism:
— MIMD: different program on each PE
(multi-core processors, clusters, etc.)
- SIMD: same instruction on PE's local data
(GPUs - graphics processing units)

* Each MIMD PE runs a sequential program...
nothing special in code generation

— If one PE executes some code, all must
— Can disable a PE that doesn't want to do it

SIMD Code

 There are two flavors of data
— Singular, Scalar: one value all PEs agree on
— Plural, Parallel: value local to each PE

* Assignments and expressions work normally,
except when mixing singular and plural:
— Singular values can be copied to plurals
— Plural values have to be “reduced” to a single
value to treat as singular; for example, using
operators like any or all

* Control flow is complicated by enable masking...

1f (expr) stat

* Jump over stat if expris false for all PEs;
otherwise, do for all the PEs where it's true

PushEn ; save PE enable state
{code for expr}

Test ;test on each PE...
DisableF ;turn off 1f false
Any ;any PE sti1ill enabled?
JumpF L ;any PE must do stat?

{code for stat}
L: PopEn ; restore enable state

if (¢ < 5) a = b;

* Masking idea can be used in sequential code to
avoid using control flow: if conversion
* The above can be rewritten as:

a= ((c <5) ?2 b : a);

* Bitwise AND with -1 can be used to enable,
while AND with O disables, thus simply OR:

-(c < 5);
((t & b) | ((~t) & a));

t
a

while (expr) stat

 Keep doing stat while expr is true for any
PE; once off, PE stays off until while ends

PushEn
M: {code for expr}
Test
DisableF
Any
JumpF L
{code for stat}
Jump M
L: PopEn

; save PE enable state

;Lest on each PE...

;turn myself off 1f false
;any PE sti1ill enabled?
;exit 1f no PE enabled

; restore enable state

Functions & Subroutines

* Mixes expressions and control flow...

* Complex!
— Support of recursion

— Lots of stuff that has to happen
- .. but

specifies it (e.g., as part of the ABI)

* We'll focus on generically what must happen

Simple Subroutine Call/Return

* Jump, but first save return address on stack

sub () ; Push L
Jump sub
L:
sub () { sub:
return; Ret ; PC=pop

Simple Subroutine Call/Return

* Jump, but first save return address on stack
* Very common, and L is actually PC value when
executing, so often a special instruction:

Push L Call sub
Jump sub

Stack Frame

The return address isn't all we must pass...

Everything for a particular call is a stack frame:
— Return address

— Return value (for a function)

- Argument values

— Local variables

— Temporaries

— Optionally, a frame pointer (FP)

Call/return and stack use is specified in ABI

Function Call

* Reserve space for return value first...
* Then push args & remove them on return

a = f£(5); Push a
Push 0 ;ret wvalue
Push 5 ;push arg
Call £
Pop ; POP arg
Store
Pop

Function Call

f(int b) {

}

return (b+1) ;

Push 16
ASP
Push 16
ASP

Ind
Push 1
Add
Store
Pop
Ret

Function Call

Push 16 ;o0ffset of ret wvalue (0)
ASP ;add stack pointer

Push 16 ;stack offset of b

ASP

Ind ;get rval of b

Push 1 ;add 1

Add

Store ; store 1nto ret wvalue
Pop ; remove extra copy

Ret

Frame Pointer

* Where did the stack offsets come from?

f: Push ; stack offset of ret value

Push ; stack offset of b

* Frame pointer (FP) points at a fixed point in the
stack (saved FP), forming a linked list of frames

Function Call Using FP

* Mark pushes old FP, makes new FP point at it

* Release restores old FP, removes frame

a

£(5);

Push a

Push 0 ;ret wvalue
Push 5 ;push arg
Mark

Call £

Release

Pop ; POP arg
Store

Pop

Function Call Using FP

f(int b) { f: Push 4 ;always £
return (b+1) ; AFP
} Push -4 ;always b
AFP
Ind
Push 1
Add
Store
Pop
Ret

What Is Passed For Args?

Call by value: copy of rval
— used by most languages (C, Java, etc.)
— considered safest way to pass values

Call by address or reference: copy of lval
— used by: ForTran, C* reference, Pascal var
— efficiently avoids copying big data structures

Call by name or thunk: pointer to function
to compute lval as it would have thunk to earlier
— used by: Algol, some Lisp variants

Enough Generalization: MIPS!

* We'll be using MIPS throughout this course

* A simple, 32-bit, RISC architecture:
— 32 general registers, 3-register operands
— Strict load/store for memory access
— Every instruction is one 32-bit word
- Memory is byte addressed (4 bytes/word)
— Closely matched to the C langauge

MIPS Registers ($ nhames)

Szero
Sat
Sv0-Svl
Sa0-$a3
St0-$t9
$Ss0-$s7
Sk0-Sk1
$gp

$sp

Sra

constant 0

reserved for assembler
value results
arguments (not on stack)
temporaries

save before use
reserved for OS kernel
global pointer (const)
stack pointer

frame poilnter

return address

MIPS ALU Instructions

* Either 3 reg operands or 2 regs and immediate
16-bit value (sign extended to 32 bits):

add S$rd, Srs, Srt frd=rs+rt
addi S$rt, $rs,immed #rt=rs+immed

* Suffix of i means immediate (u for unsigned)
* The usual operations: add, sub, and, or, xor

* Also has set-less-than, s1t: rd=(rs<rt)

MIPS Load Immediate

* Can directly load a 16-bit immediate:
addi S$rt,$0,imm #rt=0+imm

* For 32-bit, generally use 2 instructions to load
upper 16 bits then OR-in lower 16 bits:

lui S$Srt,imm frt=(1mm<<16)
ori S$rt,Srs,imm #rt=rs| (imm&Oxffff)

e MIPS assembler macro does it as 1i or la:

li Sdest, const fdest=const

MIPS Load & Store

* Can access a memory location given by a
register plus a 16-bit Immediate offset:

lw Srt,off (Srs) #rt=memorvy [rs+off]
sw Srt,off (Srs) #memory [rs+off]l=rt

* Byte and halfword using b and h instead of w

MIPS Jumps

* MIPS has a jump instruction, j:

j address #PC=address

* (Call saves return address in $ra: jal addr
* Return is jump register using jr S$ra
* Limited range (26 bits) for § or jal;

can do full 32-bit target using jump register:

la $t0, address #tO0=address
jr S$tO0 #PC=t0

MIPS Branches

* MIPS has only conditional branches:

beq Srs,Srt,lab #if rs==rt, PC=lab
bne $rs,$rt,lab #if rs!=rt, PC=lab

* The target is encoded as a 16-bit immediate:
immediate = (lab-(PC+4))>>2

* Branch over jump to target distant address

MIPS Comparisons

* Truthin Cis "non-0,” so compare to $0
* Equality comparison can use xor or sub

* |nequality comparisons all use s1t:
St0=St1l<$t2 slt $tO0,S$tl, Sst2
St0=Stl1>=5t2 I St0=Stl<s$t2
St0=St1>$t2 slt $tO0, $t2,s$tl
St0=Stl1l<=5t2 I St0=Stl1l>5t2

MIPS Assembler Notation

* One assembly directive or instruction per line
e # means to end of line is a comment

* Labels look like they do in C, followed by a :

* Directives generally start with a

.data #the following is static data
.text #the following is code

.globl name #name is what C calls extern
.word wvalue #initialize a word to wvalue

.ascii “abc” #initialize bytes to 97,98, 99
.asciiz “abe” #initialize bytes to 97,98,99,0

Summary

There are many different assembly languages,
but there are many similarities

ISA specifies instructions (ABI for conventions)
MIPS is a very straightforward RISC made for C

You don't need to write lots of assembly code
— tweak code output by a compiler
— write little wrappers for what compiler can't do

MIPS References & Tools

 Reference materials:
— The course website
— The textbook
— MIPS ¢cec -s

* Simulator we prefer is SPIM, WWW version:

http://garage.ece.engr.uky.edu:10043/cgi-bin/cgispim.cgi

* There’s even a little C-subset compiler:

http://garage.ece.engr.uky.edu:10043/cgi-big/mucky.cgi

http://garage.ece.engr.uky.edu:10043/cgi-bin/cgispim.cgi
http://garage.ece.engr.uky.edu:10043/cgi-big/mucky.cgi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

