A Simple Implementation

CPE380, Spring 2022

Hank Dietz

http://aggregate.org/hankd/

q:gz University of
Kentucky

http://aggregate.org/hankd

Where Is This Stuff?

. per se...
* Primary reference is:

http://aggregate.org/CPE380/refs2S522.html

* Textbook appendix B reviews CPE282 stuff...

http://aggregate.org/CPE380/refs2S22.html

A Dumb Implementation

* A design

* Can be built with a pile of TTL parts

* (Can execute MIPS instructions

* Slow; many clock cycles per instruction
* The key parts:

* Memory

* Processor

* |/O - which we'll ignore for now...

Our Favorite Gates

* |[n CPE282, you never used one of these:

In—’—aut

but they help keep signals digital...
* |In CPE380, we use lots of these:

enable

In—»—nut

to make bus and mux structures...

Tri-State

In enable A B out

In—’—nut

Voo
X q off | off s
] A
Driver
q 1 off | on q
1 1 on | off 1
enable out
B on | on short!
In out
Open Collector replaces A with a resistor
Tri-State Driver —

TTL Input floats high; CMOS doesn't

Processor/Memory Interface

Control

Datapaths

MF

readi~write

strobe

address

data

MEM

A bit Of SRAM
(D Flip Flop)

TP

CLK slD;

Ol

In Verilog

module DFF(q, d, clk);
input d, clk;
output reg q;

always @(posedge clk)
q <= d;

endmodule

A Simple Memory

Addr 7L D
a

What If Data Is Bidirectional?

Processor ~ Memory

Read/~Write
Dataln —‘ L7 DataOut

DataOut Dataln

In Verilog

module memory(mfc, dread, dwrite, addr, rnotw, strobe);
output reg mfc; output reg [7:0] dread;

input [7:0] dwrite; input [15:0] addr;

input rnotw, strobe;

reg [7:0] m [65535:0];

always @(posedge strobe) begin
mfc = 0;
if (rnotw) begin
dread <= m[addr];
mfc = #4 1; // delay 4 units of simulated time
end else begin
m[addr] <= dwrite;
end
end
endmodule

Parametric Verilog

module memory(mfc, dread, dwrite, addr, rnotw, strobe);
parameter ABITS = 8; parameter DBITS = 16;

output reg mfc; output reg [DBITS-1:0] dread;

input [DBITS-1:0] dwrite; input [ABITS-1:0] addr;

input rnotw, strobe;

reg [DBITS-1:0] m [(1<<ABITS)-1:0];

always @(posedge strobe) begin
mfc = 0;
if (rnotw) begin
dread <= m[addr];
mfc = #4 1; // delay 4 units of simulated time
end else begin
m[addr] <= dwrite:
end
end
endmodule

A bit Of DRAM

Pass Transistor

Word Line (select)

Bit Line (data)

____ Capacitor

Data to Vcc to store 1
Data to Gnd to store O

Read: dump charge, amplify, & threshold

— Analog - slow & noise sensitive
— Destructive (need to refresh value)
Charge slowly leaks (need to refresh)

Inside The Processor

Control

In Verilog

"define WORD [31:0] // size of a data word
"define STATENO [31:0] // size of a state number

module module processor(halt, reset, clk);
output reg halt;

input reset, clk;

reg WORD IR, PC, MAR, MDR, Y, ALUMUX, ALUZ;
reg rnotw, strobe;

wire mfc;

wire WORD dread;
reg WORD addr;
reqg STATENO STATE;

memory mainmem(mfc, dread, MDR, MAR, rnotw, strobe);

endmodule

Something To Run It...

module testbench;
reg reset = 1;
reg clk = 0;

wire halt;

processor PE(halt, reset, clk);
initial begin

#1 reset = 0;
while (!'halt) begin

#1 clk = 1;
#1 clk = 0;
end
end

endmodule

REGISTER
control signal

Effect

ALUadd Configures the ALU to add its inputs

ALUand Configures the ALU to bitwise AND its inputs

|ALUxor ||Conﬂgures the ALU to bitwise eXclusive OR its inputs |

|ALUOr ||Conﬂgures the ALU to bitwise OR its inputs |

|ALUSII [Configures the ALU to shift left logical; the result is (bus << Y) |

IALUSsIt [Configures the ALU to compare its inputs; the result is (Y < bus) |

|ALUSsrl [Configures the ALU to shift right logical; the result is (bus >> Y) |

|ALUsub [Configures the ALU to subtract the bus input from Y |
|

|CONST(value)

[Places the constant value onto the bus

HALT

Halt the machine (stop the simulator without error) at the end of the current state

IRaddrout

Tri-state enables the portion of the Instruction Register that contains the (26 bit, MIPS "]" format) address, along with the top & bits of the
Program Counter, to be driven onto the bus

IRimmedout

Tri-state enables the portion of the Instruction Register that contains the (16 bit, MIPS "I" format) 2's complement immediate value to be sign-
extended to 32 bits and driven onto the bus

IRin Latches the bus data into the Instruction Register at the trailing edge of the clock cycle

IRoffsetout Tri-state enables the Instruction Register's shifted and sign extended value from the offset field to be driven onto the bus (used for branches)

LIUMP[,’abeJJ ||Microc0de jump to labe/ |

hUMPonop ||Microcode jump to label named like the opcode; e.g., if an "Addi" is in the IR, jumps to the microcode label Addi |

[MARin [Latches the bus data into the Memory Address Register at the trailing edge of the clock cycle |

[MARout [Tri-state enables the Memory Address Register's output to be driven onto the bus |

[MDRin [Latches the bus data into the Memory Data Register at the trailing edge of the clock cycle |

[MDRout [Tri-state enables the Memory Data Register's output to be driven onto the bus |

|MEMread ||Initiate a memory read from the address in the MAR; here, you may assume that the memory will take 2 clock cycles to respond |

MEMwrite Initiate a memory write using the data in the MDR and the address in the MAR; in this simple design, you may assume that a memory write
takes precisely 1 clock cycle

PCin Latches the bus data into the Program Counter at the trailing edge of the clock cycle

PCinif0 Only if the value in £ is zero, latch the bus data into the Program Counter at the trailing edge of the clock cycle

PCout Tri-state enables the Program Counter's output to be driven onto the bus

REGIn Latches the bus data into whichever register is selected by SELrs, SELrt, or SELrd; the value is latched at the trailing edge of the clock cycle

|REGout ||Tri—state enables the output of whichever register is selected by SELrs, SELrt, or SELrd; the selected value is driven onto the bus |

|SELr5 ||Se|ects the rs field of the IR to be used to control the register file's decoder |

SELrt [selects the rt field of the IR to be used to control the register file's decoder |

|SELrd [Selects the rd field of the IR to be used to control the register file's decoder |

UNTILmfc Repe‘?t this state until the memory has issued a memory fetch complete signal, indicating that the fetched value will be valid to read from the
MDR in the next clock cycle

Yin Latches the bus data _intc- the ¥ re:gister at the trailing edge of the clock cycle; this register is needed because, with only one bus, one of the
two operands for a binary operation (e.g., Add) must come from somewhere other than the bus

[Yout [Tri-state enables the Y register's output to be driven onto the bus |

Zin The ALU is always producing a result, but we only make note of that result if we latch the ALU's output into the Z register at the trailing edge
of the clock cycle

Zout Tri-state enables the Z Register's output to be driven onto the bus

Control Logic

* A big state machine (spec. by names)
— Begins by fetching instruction
— Decoding instruction sends us to
particular instruction's state sequence
— Ends by going to fetch next instruction
* |nstruction decode logic
when mask match lab
— Applied in state with JUMPONOP
— if (IR & mask) == match) goto lab:;

Instruction Fetch Sequence

* Not dependent on instruction — can't be
* Also does PC+=4

Start:

PCout,MARin,MEMread, Yin
CONST(4) ,ALUadd, Z1in,UNTILmfc
MDRout, Irin

JUMPONOP, Zout,Pc1n

HALT /* 1llegal inst. */

MIPS Register Add

e add $rd,$rs,$rt
e Means rd=rs+rt

Add: SELrs,REGout,Y1in
SELrt,REGout,ALUadd, Zin
/out,SELrd,REGin,JUMP(Start)

MIPS Register And

e and $rd,$rs,$rt
e Means rd=rs&rt

And: SELrs,REGout,Y1in
SELrt,REGout,ALUand, Z1in
/out,SELrd,REGin,JUMP(Start)

MIPS Load Word

e w $rt,immed($rs)
e Means rt=mem[immed+rs]

Lw: SELrs,REGout,Y1ln
IRIMMEDout,ALUadd, Zin
/out,MAR1n,MEMread
UNTILmfcC
MDRout,SELrt,REG1n,JUMP(Start)

MIPS Store Word

e sw $rt,immed($rs)
e Means mem[immed+rs]=rt
* Don't have to wait for write to complete

Sw: SELrt,REGout,MDR1n
SELrs,REGout,Y1n
IRIMMEDout,ALUadd, Zin
/out,MAR1n,MEMwrite,JUMP(Start)

Timing

* Clock period determined by slowest path
In any state — try to minimize variation
* Number of clock cycles/instruction (CPl) is
determined by counting
— Not just count of states passed through
— Time passed waiting counts (UNTILmfc)
* Clock period and CPI usually trade off;
higher Hz often achieved by higher CPI

Clock Period

 Assume the critical state is:

SELrt,REGout,MDR1in,ALUadd, Zin

* The paths are:

SELrt > REGout > MDR1n
SELrt > REGout > ALUadd > Zin

Reducing Clock Period

* |ncrease clock speed by replacing:
SELrt,REGout,MDR1n,ALUadd,Z1n
* With:

SELrt,REGout,MDR1n
MDRout, ALUadd, Z1in

Counting CPI

* |nstruction fetch time counts
* Time between MEMread and UNTILmTfcC

Lw: SELrs,REGout,Yin +1
IRIMMEDout,ALUadd, Zin +1
Zout,MARin,MEMread +1
UNTILmfc +7
MDRout,SELrt,REG1in,JUMP(Start) +1

Cycle-Accurate Simulation

* Custom-built full simulator for CPE380
— Textual state machine specification
— Can define signal delays
— Can define initial & final conditions
— Built-in mini MIPS assembler

http://aggregate.org/CPE380/refss.html

* Actual simulator is live at
http://super.ece.engr.uky.edu:8088/cgi-bin/simple.cgi

http://aggregate.org/CPE380/refss.html
http://super.ece.engr.uky.edu:8088/cgi-bin/simple.cgi

A Verilog Implementation

Design for simulation, not rendering HW
Key ideas:

“define control signals & constants
module memory(..);

Models main memory

module processor(halt, reset,clk);
Models the complete processor

module bench;

Drives the simulation

Verilog Simulation

* Don’t have to go low level:

http://aggregate.org/CPE380/multiv.html

 Don’t have to feed it raw bits either;
here’s a (slightly mutant) MIPS assembler:

http://aggregate.org/CPE380/mipsaik.html

http://aggregate.org/CPE380/multiv.html
http://aggregate.org/CPE380/mipsaik.html

