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Abstract
A composite image is an image created by combining por-

tions of multiple separately-captured images. Stitching of cap-
tures of tiled portions of a larger scene can be used to produce a
single composite image (a panorama) with a wider view angle and
higher total resolution. Image stacking is a different type of com-
positing, in which the scene is not changing significantly across
captures, but camera parameters might be systematically varied.
Focus stacking can extend the depth of field, aperture stacking
can implement apodization shaping the out-of-focus point spread
function, and noise and motion reduction can be accomplished
even using the same camera parameters for each capture to be
stacked. These and other compositing methods are well known
and commonly used, but the same fixed pattern is commonly used
for ordering of captures and choice of capture parameters. This
paper examines the problem of static, pseudo-static, or dynamic
determination of the optimal capture parameters and ordering.

Introduction
Electronic image sensors have been steadily improving. Not

only have high-end camera sensors dramatically improved in
nearly every way, but cameras with small, but decent quality, sen-
sors can be purchased for as little as a few dollars. However,
many photographic tasks still cannot be cost-effectively accom-
plished using just a single exposure. The current work examines
the problem of ordering the component captures within creation
of a composite image. Toward this goal, it is useful to divide
composite images into two broad categories.

In the first group, each technique produces a spatially-tiled
composite image. Significant physical or logical motion occurs
between exposures so that different areas within the scene are
sensed, and it is the sequencing of those movements that matters
most:

• Panoramas: the entire camera is moved, ideally by rotations
about a nodal point[1], in order to produce a stitched composite
image with a wider view angle and higher resolution

• Scans: the sensor is moved in the image plane, typically within
a flat-bed scanner or a large-format camera[2][3], to produce
a stitched image simulating what a larger sensor would have
captured

• Electronic shuttering and single-pixel cameras[4]: the sensor
is not physically moved, but the set of pixel locations being
sampled is varied over time; although electronic shuttering is
usually described as “rolling” from one edge to the opposite
edge of the sensor, other sampling sequences are possible[5]

The second group of composites primarily concern not selection
of the region to actively sense, but sequencing of capture param-
eters for sequential exposures covering roughly the same area.

There are many variations of temporal composites, but the key
characteristic is that the sequencing decisions involve parame-
ters other than selection of which area within the scene is being
sensed.

• Bracketing: this is a sort of degenerate compositing in which
the “best” of multiple captures, with either some exposure pa-
rameter varied or variations due to unstable grip of the camera
or changes in the scene, is selected

• Stacks: the sensor and lens are held in approximately the same
position over multiple exposures which are precisely aligned
and then combined; this stacking may be for:

– HDR: High Dynamic Range imaging, combining multiple
images to extend the light-to-dark range of scene bright-
nesses recorded[6]

– Noise reduction: combining multiple images to improve the
SNR (Signal to Noise Ratio) by averaging[7]

– Super-resolution: combining multiple images aligned at the
sub-pixel level to synthesize higher resolution[8]

– Blur reduction: combining the least blurry portions from
multiple images to construct a complete image in which there
is less motion blur from moving scene content

– Focus: combining the sharpest portions from multiple im-
ages to construct a complete image in which there is an ex-
tended depth of field[6]; making an “all in focus” image

– Apodization or Aperture: combining multiple images cap-
tured with different aperture settings to approximate apodiza-
tion in which the out-of-focus point spread function (OOF
PSF) is bright in the middle and smoothly darkens toward
the edges (this is what Minolta called “Smooth Trans Focus
emulation”[9])

The current work is thus divided into two main sections: one
about optimally ordering captures for spatial tiling and second
about sequencing temporal composite captures.

Walk Ordering for Spatial Tilings
The optimal ordering of component captures for a spatial

tiling is the problem of finding a walk order, which is a funda-
mentally difficult problem. If the optimality metric is minimizing
total distance traveled or time spent traveling, visiting each spa-
tial tile position once is essentially the definition of the classical
“Traveling Salesman problem” (TSP)[10]. However, the optimal-
ity is really driven by two separate constraints, only the first of
which is a classical TSP:



Figure 1. Lafodis (LArge FOrmat DIgital Scanning) cameras use stepper-driven 3D-printed herringbone-gears for angle-radius motion control

• The efficiency of implementing the walk order using the
hardware motion abilities; for example, the time taken to
move from one position to another is often a function of
the sample position coordinate differences: how long does
it take stepper motors to move from one position to the next
in the walk order?

• The spatio-temporal consistency of the scene; many scenes
being scanned are not entirely static, but contain elements
that change over time such that spatially adjacent samples
that are temporally distant (captured at significantly differ-
ent times) may result in inconsistencies in the stitched image

Suppose that the scene is completely static. Using a standard X-
Y motion drive system, the time to move from one position to
the next can be trivially minimized by using any walk order in
which only a unit step is taken to move from one position to the
next. While a conventional raster scan does not meet this con-
straint, a bidirectional raster scan does, and so do many space-
filling curves. The obvious argument against such a scan order is
that some mechanical motion systems suffer “play” which would
cause inaccurate positioning each time travel direction is reversed,
but this play can be compensated for either mechanically (so-
called “zero-backlash” systems) or computationally. An optimal
static walk order easily can be pre-computed.

Even more novel motion-control systems easily yield opti-
mal static walk orders. For example, Lafodis[3], shown in Figure
1, is a very inexpensive LArge FOrmat DIgital Scanning camera
that can capture 160mm-diameter images with up to 2.6GP reso-
lution, or 4x5” at around 1GP, by scanning the image plane with
a 2MP ESP32-CAM sensor. Lafodis takes advantage of 360◦ an-
gle × 100mm radius motion control to fit the drive system within
the camera without loss of scannable area; X-Y drive would have
required increasing the camera volume by roughly a factor of 2×
to make clear space for the drive system.

A spiral walk order would be fairly efficient for using
Lafodis to capture a completely static scene, however, it would
not necessarily be optimal. This is because the rotational step
rate of Lafodis is dependent on the angle moved through rather
than the distance, so the positioning rate in the innermost portion

of the spiral would be limited by angular step rate. One time-
optimal pattern would be a many-pointed star-like walk order
making most steps in the radius axis rather than angle changes.
In practice, the ESP32-CAM captures are slow enough that the
motion control delay often does not dominate scan time, and even
simulating a bidirectional X-Y raster scan is practical.

Spatio-Temporal Properties of Static Walks
By far the more complex and interesting case is when scene

content may be changing during the scan. Let us begin by assum-
ing we are interested in pre-computing a static walk order that
minimizes probability of significant scene object motion artifacts.
Let us further assume that sampling any one tile position takes 1
unit of time independent of the travel distance to that position –
essentially assuming that the image capture is significantly slower
than the motion control system.

To minimize these artifacts, the walk order used should have
the property that the temporal distance between sampling spatially
neighboring positions should be as small as possible. For exam-
ple, a sample location within a rectangular grid of samples to be
composited has eight immediate spatial neighbors. If that location
is sampled at time t, the neighbors could be sampled within a win-
dow as small as t ±4δ where δ is the time taken for one sample,
making it highly unlikely that the scene content will have changed
enough to cause a visual discontinuity in the stitched composite
image. If one of neighbors occurs at t + 10000δ , the probability
of a scene-object-motion discontinuity is much higher. Thus, the
probability of an objectionable motion artifact is dominated by the
maximum temporal distance to sampling of a spatial neighbor.

A program was written to construct and evaluate walk orders.
For this paper, the examples will be limited to a 320×180 tile scan
– a modest number with the popular 16 : 9 aspect ratio.

Raster scan patterns are by far the most commonly used, yet
they do not have very favorable temporal properties. Figure 2 de-
scribes the walk order for a standard X-Y raster. In the left image
of the figure, each pixel represents one tile, and the colors are as-
signed based on position of the tile in the walk order, going from
blue (first) to red (last). In the right image, the color represents the
maximum temporal distance to sampling of an immediate neigh-



for (y=0; y<YMAX; ++y) for (x=0; x<XMAX; ++x)

sample(x,y);

Figure 2. X,Y raster scan order; avg. distance 240, median 320

for (y=0; y<YMAX; ++y) for (x=0; x<XMAX; ++x)

if (y&1) sample(XMAX-1-x,y); else sample(x,y);

Figure 3. X,Y biraster scan order; avg. distance 240, median 162

bor tile, scaled from blue (1) to red (for any delay greater than the
maximum dimension of the raster, 320 in this case): colors closer
to red thus indicate tiles likely to suffer scene object motion dis-
continuities. Simplified code implementing the scan order is also
given.

Figure 3 shows that, although the median temporal distance
is improved over a unidirectional raster scan by using a bidirec-
tional raster scan, each tile is still very likely to suffer from mo-
tion artifacts. Given that the Y dimension is smaller than X, it
is not surprising that turning the raster walk pattern 90◦, making
the scan Y-X, helps by about the ratio between XMAX and YMAX.
Figures 4 and 5 show that both unidirectional and bidirectional
rasters have significantly better temporal locality – but the green
in the distance images is only about twice as good as the red in
the images for X-Y rasters.

Another walk order often discussed, and mentioned in the
context of Lafodis above, is a spiral scan. A spiral walk order can
be created efficiently by applying Bresenham’s algorithm for effi-
ciently drawing a circle[11] for a sequence of increasing radii, as
described in Figure 6. The resulting pattern may be interesting,
but only a tiny fraction of the pixels at the center have all spatial
neighbors also temporally near. The “onion” walk order[12] is
closely related, but as shown in Figure 7, is formed by a sequence
of concentric square walks. It has poorer temporal locality prop-
erties than the spiral. Note that both of these patterns naturally fill
areas of shapes that are larger than the rectangular array of tiles
to sample; the mustvisit(a,b) function tracks this by returning
false if position (a,b) is either out of bounds or has been sampled
before.

A variety of space-filling curves have been studied and used
to produce memory layouts for computer data structures with de-
sirable locality properties; they can serve the same purpose here.
The Z-order, also known as the Lebesgue or Morton curve[13], is

for (x=0; x<XMAX; ++x) for (y=0; y<YMAX; ++y)

sample(x,y);

Figure 4. Y,X raster scan order; avg. distance 135, median 180

for (x=0; x<XMAX; ++x) for (y=0; y<YMAX; ++y)

if (x&1) sample(x,YMAX-1-y); else sample(x,y);

Figure 5. Y,X biraster scan order; avg. distance 135, median 180

easily constructed by interleaving the bits of X and Y coordinates
and visiting X,Y positions in the order of the interleaved values.
As should be immediately evident from Figure 8, the Z curve walk
yields dramatically better temporal locality of spatial neighbors
for most tiles, with poor locality tiles in a grid pattern. However,
the Z-order curves are based on filling square areas with sides that
are a power of 2 in length. Rather than simply clipping the curve,
the Z-order coordinates can be scaled to fit the rectangular tile ar-
rangement. We call this walk order “DivZ,” as shown in Figure 9,
and overall locality is slightly improved over the clipped Z-order
walk.

Like the unidirectional rasters, a Z order walk “hops around”
– the next tile sampled is not always a spatial neighbor of the cur-
rent tile. Not all space-filling curves have that unfortunate behav-
ior. For example, the Hilbert curve does not[14], and can be effi-
ciently computed as described in Hacker’s Delight[15]. As shown
in Figure 10, the Hilbert order always advances to a spatial neigh-
bor of the current tile – provided the space being filled is a square
with power-of-2 sides. This does minimize physical motion delay
for X-Y drive systems, and it makes very low temporal differences
more common, but the worst-case temporal differences are signif-
icantly larger than for the Z order. Scaling the space to produce
a “DivHilbert” walk order, as shown in Figure 11, avoids a few
large hops where the Hilbert curve is clipped (the bright red spots
at the edges of Figure 10), but seems to make locality slightly
worse overall.

In summary, of the patterns considered, it appears that one
of the space-filling curve walk orders would be the best choice.
However, taking the actual image capture and scan positioning
times into account can result in other orderings being slightly bet-
ter. In fact, the program constructed to perform the above tests im-
plements a Genetic Algorithm[16] that attempts to evolve some-
what better orderings for the cost function given. The GA’s initial



let cx=XMAX/2, cy=YMAX/2;

for (r=0; r<=sqrt(XMAX*XMAX+YMAX*YMAX); ++r)

for (each (x,y) on a circle of radius r)

if (mustvisit(cx+x,cy+y)) sample(cx+x,cy+y);

Figure 6. Spiral scan order; avg. distance 298, median 305

let cx=XMAX/2, cy=YMAX/2;

for (s=1; s<=max(XMAX,YMAX); s+=2)

for (each (x,y) on a square of side s)

if (mustvisit(cx+x,cy+y)) sample(cx+x,cy+y);

Figure 7. Onion scan order; avg. distance 319, median 346

population of potential solutions includes all the above orderings
as well as randomly-generated orders. The improvements made
were generally small, but some improvement was obtained for
every case tried.

Pseudo-Static Scene-Dependent Walk Orders
In addition to purely static walk orders, it also is possible to

use a small amount of scene overview or summary information to
drive creation of a static order designed specifically for the current
scene. This summary information can be obtained either by a
sparse/lower-resolution scan, or by using a secondary camera to
capture the full view with lower quality.

A portion of the scene which lacks detail is inherently less
sensitive to changes in the scene. For example, tiles within a fea-
tureless blue sky have virtually no penalty associated with poor
correlation of spatial and temporal locality. The same would be
true of a scene region for which a sequence of two or more quick
summary captures revealed no signs of scene object motion. Tiles
in such regions can be omitted from the walk order computation
and optimization, to be added-in using whatever order is conve-
nient at the end of the performance-critical walk. It may even be
feasible for low-detail tiles to be skipped entirely, substituting the
corresponding portion of a summary image instead of sampling
the tile.

Dynamic Walk Orders
Beyond making a pseudo-static scene-dependent walk order,

it is possible to dynamically change the walk order during capture.
The goal is to detect inconsistency in real time and to schedule re-

let b= smallest power of 2 >= max(XMAX,YMAX);

for ((x,y) in b*b Z order)

if (mustvisit(x,y)) sample(x,y);

Figure 8. Z curve scan order; avg. distance 198, median 15.2

let b= smallest power of 2 >= max(XMAX,YMAX);

for ((x,y) in b*b Z order)

let divx=(x*XMAX)/b, divy=(y*YMAX)/b;

if (mustvisit(divx,divy)) sample(divx,divy);

Figure 9. DivZ curve scan order; avg. distance 169, median 15.1

let b= smallest power of 2 >= max(XMAX,YMAX);

for ((x,y) in b*b Hilbert order)

if (mustvisit(x,y)) sample(x,y);

Figure 10. Hilbert curve scan order; avg. distance 241, median 13.3

let b= smallest power of 2 >= max(XMAX,YMAX);

for ((x,y) in b*b Hilbert order)

let divx=(x*XMAX)/b, divy=(y*YMAX)/b;

if (mustvisit(divx,divy)) sample(divx,divy);

Figure 11. DivHilbert curve scan order; avg. distance 213, median 14.8

sampling of the offending tiles.
The key to doing this the ability to incrementally add each

tile image to an approximate stitch of the composite image – in



Figure 12. Lafodis large format digital scanning cameras

real time. High-quality stitching generally requires global adjust-
ment of tile positions, but with approximate tile positioning it is
possible to create a stitch good enough to discover where scene
changes have been sufficient to create a motion artifact in the fi-
nal stitched image. Senscape[17] provides a simple mechanism
for real-time stitching based on modeling of uncertainty in fused
sensor data, and we have implemented this for Lafodis, with an
example real-time stitch given in Figure 12. A low-certainty tile
placement should trigger scheduling of an additional sampling of
that tile... which might in turn trigger resampling of that tile’s
neighbors if confidences drop for them too.

The tile re-samples could be given priority over continuing
with the existing scan order, however, scanning is not a very fast
process in comparison to the speed with which potential walk or-
ders can be evaluated. Even use of a GA at runtime to modify
the remaining walk order is feasible because the scheduling sim-
ply has to be fast enough to keep-up with the physical motion and
sampling rates. When it is time to sample another tile, the GA can
be paused and the current best choice of next tile accepted.

Temporal Composites
For temporal composites, although there is an ordering prob-

lem, in most cases the order of samplings is either unimportant or
a good ordering is obvious. Ordering is not particularly important
for stacking noise reduction, super-resolution, and blur reduction
because the separate samplings are in some sense all equivalent.
For bracketing or stacking HDR, focus, or apodization, the order-
ing is significant only in that the exposures with the most detail to
integrate should be given priority and grouped together.

Consider apodization stacking. A crude example of how
apodization stacking gives bokeh a smoother look is given in Fig-
ure 13; this example uses visibly too-large aperture steps, and the
seven-bladed aperture shape is somewhat obvious, but it makes
clear how the stacked exposures create a softer edge to the OOF

Figure 13. Example apodization composite transformation of OOF PSF

PSF. A better apodization composite using an f /2.0 lens might
combine exposures at f /2.0, f /2.2, f /2.5, f /2.8, f /3.2, f /3.5, and
f /4.0. The shutter speeds will be faster for wider apertures, and
less will be sharply in focus. Thus, most scene detail is deter-
mined by the smaller apertures (larger f /numbers), and it would
make sense to use a sample order that goes from f /4.0 to f /2.0 so
that the exposures that contribute the least detail happen longest
after the moment at which the exposure was triggered.

The more interesting decision for most temporal composites
is not the ordering of a fixed set of samplings, but the pseudo-
static or purely dynamic determination of the samplings to be
ordered. For example, how many exposures at what apertures
would be needed to generate a particular apodization transforma-
tion? The answer depends not only on the desired apodization
and lens characteristics, but also on how far out of focus specular
highlights in the scene are. Similarly, in focus stacking to obtain
an all-in-focus image, both the minimum number of images cap-
tured and the choice of focus distances for them are highly scene
dependent. As a simpler example, the number of samplings re-
quired for bracketing to select a non-camera-shake-blurred image
really depends on how blurry the samples are: the sequence can
stop as soon as a sharp capture has been made.

In sum, most types of temporal composites can benefit from
using quick, approximate, dynamic evaluations of the samples as
they are acquired in real time.

Conclusion
Although composite images are becoming increasingly com-

mon, the vast majority still use static sample orders that are not
tuned to maximize the quality of the final image. For spatial
tilings, we have shown that even careful selection of a static or-
dering can dramatically reduce the probability of serious spatio-
temporal artifacts. Further, principles for creating pseudo-static
and dynamic walk orderings were defined – including the con-
cept of using one or more summary captures to formulate scene-
specific priorities. It was further argued that many of the same
concepts apply for temporal composites, however, the emphasis
should be placed not on ordering, but on determining the number
of samples and parameters for each.

It is possible to combine both spatial tilings and temporal
compositing, for example, performing HDR scans. Perhaps most
interesting is the fact that emerging sensor technologies can be
thought of as inherently doing precisely that, treating each pixel
as a tile, but without the need for physical motion to implement
a spatial walk order. For example, TDCI (Time Domain Contin-



uous Imaging)[18] naturally produces estimates for pixel values
that can be translated into priorities from which a walk order for
sampling pixel values can be determined: pixels that are unlikely
to change value can be sampled less frequently, thus reducing the
bandwidth required for readout and processing. Perhaps applying
this same approach to readout of new SPAD-based or JOT-based
sensors will produce important benefits?
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