Leveraging Pixel Value Certainty in Pixel-Shift and Other Multi-Shot Super-Resolution Processing

Henry (Hank) Dietz

COIMG-142: 9:10 – 9:30 AM, January 24, 2024

University of Kentucky Electrical & Computer Engineering

Our Parsek Software Tool

- A parsec is approximately 3.26 light years: the distance at which a tiny angle offset of one arcsecond (1/3600°) spans one AU
- Parsek is Probabilistic Alignment Raw Stitcher Experiment from Kentucky, using tiny-offset captures to create a huge image
 Primarily for stitching *pixel shift images*
 - All merging of image data is based on *pixel value confidence*
 - Only raw, uninterpolated, sensel values are used even if the input is a JPEG, raw values are reconstructed
 - C++ code using OpenCV and LibRaw unprocessed_raw

Multi-Shot Methods to Increase Resolution

- How much overlap between shots?
 - Small degree of overlap
 - Large degree of overlap
- What moves?
 - $^{\circ}$ Camera and lens as a unit
 - Film/sensor only
- How does it move?
 - Manual positioning
 - Controlled motion system

Stitched Panoramas

- How much overlap between shots?
 - Small degree of overlap
 - Large degree of overlap
- What moves?
 - Camera and lens as a unit
 - Film/sensor only
- How does it move?
 - Manual positioning
 - Controlled motion system

Scanning Cameras and Scanning Backs

- How much overlap between shots?
 - Small degree of overlap
 - Large degree of overlap
- What moves?
 - Camera and lens as a unit
 - Film/sensor only
- How does it move?
 - Manual positioning
 - Controlled motion system

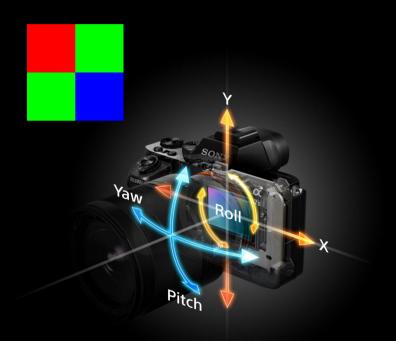
Image Stacking and Night Sight

- How much overlap between shots?
 - Small degree of overlap
 - Large degree of overlap
- What moves?
 - Camera and lens as a unit
 - Film/sensor only
- How does it move?
 - Manual positioning
 - Controlled motion system

https://voutu.be/0vd6Zk5M50A

Pixel Shift and Handheld Pixel Shift

- How much overlap between shots?
 - Small degree of overlap
 - Large degree of overlap
- What moves?
 - Camera and lens as a unit
 Film/sensor only
- How does it move?
 - Manual positioning
 - Controlled motion system



Pixel Shift and Handheld Pixel Shift Implementation

- Uses IBIS: In-Body Image Stabilization
- Pixel shift uses just X, Y
 - 4 shots: (0,0), (1,0), (0,1), (1,1)
 improves color, noise
 - 16 shots: uses 1/2-pixel offsets improves color, noise, resolution
- Handheld Pixel Shift tries to keep offsets WRT original shot

The Primary Problems with Pixel Shift

- Scene content change during exposure sequence
- Accuracy of X, Y offsets
 - Camera + lens could move due to external or induced vibration (movement can include X, Y, Z, roll, pitch, and yaw)
 - Precision and accuracy of sensor motion control
- Sampling issues lower contrast
 - Anti-alias (AA) filter or poor lens reduces contrast at pixel level
 - What is the pixel fill factor (taking microlenses into account)?

Scene Content Change

- Temporal changes really can't be "fixed"
 - Detect by area average difference between images
 - Credible repair by either blurring region or excluding image data that differs from a selected reference
- Parsek probabilistic filtering methods:
 - Prefer values from low-detail regions (approximate motion blur)
 - Prefer values similar to reference (first listed) image
 - "Outlier" filtering prefers the most similar values
 - Set with > 50% of confidence sum
 - Largest set of similar values

Accuracy of X, Y Offsets

 Sony A7RV on a "solid tripod" for shots of Yosemite, here are the X, Y pixel offsets computed by alignment:

Θ	Θ	-1.03392	-0.699499
-0.556742	-1.01952	-0.345406	-0.200595
-0.597450	-0.423268	-0.0492523	-1.371310
1.11865	-1.11554	1.18047	0.114805
-0.160752	-0.393202	-0.202039	-1.49176
0.859977	-1.86519	0.196493	-0.645636
-0.740545	-0.387017	-0.622772	-1.32642
0.454802	-1.61298	0.576902	-0.915504

- These do NOT match the 0.5-pixel multiples intended
- Error from vibration, IBIS, imperfect alignment computation

Sampling Issues

- Sampling function is not precisely known
 - Anti-alias (AA) filter or poor lens reduces contrast at pixel level
 - What is the pixel fill factor (taking microlenses into account)?
- Resulting image needs to be sharpened to restore local contrast by Octave, Deblur, Unsharp mask, Multiscale, ...
- Parsek demosaicing directly uses confidences, but also should be sensitive to patterns (like VNG, PPG, AHD, and AMaZE)

Pixel Shift, PixelShift2DNG vs. Parsek (A7RV)

1.000000	0.000000	0.000000	1.000000	6.701e-5	-1.03392
0.000000	1.000000	0.000000	-6.701e-5	1.000000	-0.699449
1.000000	5.021e-5	-0.556742	1.000000	1.648e-5	-0.345406
-5.021e-5	1.000000	-1.01952	-1.648e-5	1.000000	-0.200595
1.000000	-4.787e-5	-0.59745	1.000000		-0.0492523
4.787e-5	1.000000	-0.423268	6.402e-5		-1.37131
1.000000	-4.063e-5	1.11865	1.000000	-3.182e-5	1.18047
4.063e-5	1.000000	-1.11554	3.182e-5	1.000000	0.114805
1.000000	- 4 .795e-5	-0.160752	1.000000	-5.590e-5	-0.202039
4.795e-5	1.000000	-0.393202	5.590e-5	1.000000	-1.49176
1.000000	-9.350e-5	0.859977	1.000000	-2.073e-5	0.196493
9.350e-5	1.000000	-1.86519	2.073e-5	1.000000	-0.645636
1.000000	3.040e-5	-0.740545	1.000000	2.817e-5	-0.622772
-3.040e-5	1.000000	-0.387017	-2.817e-5	1.000000	-1.32642
1.000000	-9.104e-7	0.454802	1.000000	-4.782e-5	0.576902
9.104e-7	1.000000	-1.61298	4.782e-5	1.000000	-0.915504

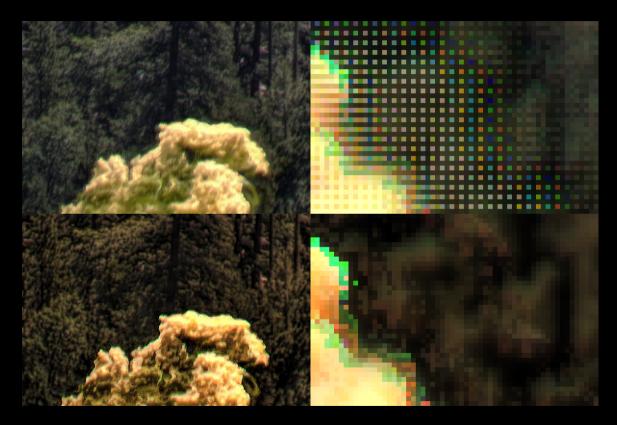
Note: Sony A7RV ISO100 16-shot pixel shift, Tamron 28-200mm @28mm; largest movement should be ~0.006mm

Pixel Shift Scaling Using Parsek (A7RV)

550MP **3X**:

• Parsek can render at **any** resolution...

61MP **1X:**



Pixel Shift with Movement, PixelShift2DNG vs. Parsek

 Movement between shots makes different colors sample different scene content – a "dot grid" pattern results

• Parsek confidence is used to favor locally-consistent content

Application to Handheld with IBIS (A7II)

- Small camera + lens movements:
 Pitch → Y, Yaw → X, Z is negligible
 Roll needs matrix correction
- Example is 4 handheld shots, matrices:

	0.000000 1.000000	0.00000 0.00000	-0.000170 1.000000	
0.999999 -0.001518	0.00_0_0	12.0452 18.9449	0.001798 0.999998	

Note: Sony A7II IS03200 IBIS on burst, Tamron 28-200mm @28mm; worst-case movement < 0.2mm



Application to Tripod Mechanical Shutter (NEX5)

• Example is 7 tripod shots, matrices:

1.000000	0.000000	0.00000	1.000000		-0.199308
0.000000	1.000000	0.00000	-0.000114	1.000000	1.63148
	-0.000411			-0.000103	
0.000411	1.000000	-3.31291	0.000103	1.000000	
1.000000	0.000163			-0.000289	2.79297
-0.000163		-3.91932	0.000289	1.0000000	-5.00340
	-0.000192				
0.000192	1.000000	-6.75450			

Note: Sony NEX5 ISO200, Takumar 35mm; movement < 0.04mm

Kentucky

Application to Tripod DSLR (5DIV)

1.000000	0.000000	0.00000	1.000000	7.683e-5	-1.07518
0.000000	1.000000	0.00000	-7.683e-5	1.000000	0.40627
1.000000	-0.000168	-0.836035	1.000000	-0.000160	-1.05267
0.000168	1.000000	-0.052061	0.000160	1.000000	0.140288
1.000000	-0.000213	4.8045	1.000000	-0.000135	-2.21256
0.000213	1.000000	-1.6784	0.000135	1.000000	-0.296225
1.000000	-0.000178		1.000000	-3.481e-5	-3.07847
0.000178	1.000000		3.481e-5	1.000000	-0.849969
1.000000	-1.785e-5		1.000000	1.228e-5	-2.30608
1.785e-5	1.000000		-1.228e-5	1.000000	-1.25281
1.000000	1.830e-5		1.000000	-0.000126	-2.73266
-1.830e-5	1.000000		0.000126	1.000000	0.27872
1.000000	-6.387e-5	-2.42884	1.000000	1.228e-5	-1.38742
6.387e-5	1.000000	1.29444	-1.228e-5	1.000000	-0.473685
1.000000	-0.000269	2.13191	1.000000	-8.787e-5	
0.000269	1.000000	-0.286397	8.787e-5	1.000000	
Note: Can		1250 Vona	nuo 50mm n	novement <	0 03mm

Note: Canon 5DIV IS01250, Yongnuo 50mm; movement < 0.03mm

Application to Tripod with E-Shutter (GX850)

• Example is 10 tripod shots, matrices:

1.000000	0.000000	0.00000	1.000000	4.251e-5 -1.09719
0.000000	1.000000		-4.251e-5	1.000000 -0.292483
1.000000	9.998e-5	2.22964	1.000000	6.072e-5 -2.15389
-9.998e-5	1.000000	-0.624429	-6.072e-5	1.000000 -1.37466
	-3.025e-5 1.000000		1.000000 1.083e-5	1.083e-5 -0.586833 1.000000 0.970092
1.000000	4.965e-5	-0.918101	1.000000	3.201e-5 -1.36666
-4.965e-5	1.000000	0.803148	-3.201e-5	1.000000 0.112376
1.000000	8.480e-5		1.000000	6.147e-5 -1.90292
-8.480e-5	1.000000		-6.147e-5	1.000000 1.37994

Note: Lumix GX850 IS0200 e-shutter, Minolta 45mm; movement < 0.01mm

Parsek Command Line Options & Defaults

Usage: parsek -options input_files

- -a int set number of alignment iterations (50)
- -c str 2x2 RGB CFA pattern is RGGB
- -e flt alignment termination epsilon (1e-12)
- -f flt filter pixels differing from first by more than (0.25)
- -m flt set maximum confidence (4)
- -n toggle neighborhood filtering (OFF)
- -o str set output file name (parsek.png)
- -0 flt filter outliers differing by more than (0.25)
- -p flt prune image if alignment rotation/scaling exceeds (0.010000)
- -r toggle input images are raw (OFF)
- -s toggle smoothing in 24bpp to raw conversion (OFF)
- -v increment verbosity of messages
- -X int set final image int times input image x (columns); 2 by default
- -x int set final image x as int (columns)
- -Y int set final image int times input image y (rows); 2 by default
- -y int set final image y as int (rows)

Input images are converted to 16bpp raw; result is 16 bits per channel RGB

Conclusions – using Parsek

- Using only the raw-sampled image data improves stitch quality
- Confidence-based merging reduces artifacts
 - Weighting by precise spatial relationships
 Allows simple filtering to reduce temporal artifacting
- Real-world multi-shot capture has positional noise
 - Tripod e-shutter pixel-shift does **NOT** move exactly as specified
 - $^{\circ}$ Tripod typically constrains Y and Roll tighter than X
 - Handheld IBIS bursts gave +/- ~0.1mm, significant Roll
 - $^{\circ}$ Tripod single-shot between +/- ~0.01mm and +/- ~0.05mm

